Ôn tập Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đào Phúc Tran

cho góc nhọn xoy trên tia ox lấy điểm a trên tia oy lấy điểm b sao cho oa=ob trên tia ax lấy điểm c trên tia by lấy điểm d sao cho ac=bd
a chứng minh ad=bc
b gọi e là giao điểm ad và bc chứng minh eac=ebd
c chứng minh oe là phân giác của góc xoy

Thanh Hoàng Thanh
19 tháng 1 2022 lúc 9:45

a. Ta có: OD = OB + BD; OC = OA + AC.

Mà OA = OB (gt); BD = AC (gt).

=> OD = OC.

Xét tam giác AOD và tam giác BOC có:

+ OA = OB (gt).

\(\widehat{O}\) chung.

+ OD = OC (cmt).

=> Tam giác AOD = Tam giác BOC (c - g - c).

=> AD = BC (Cặp cạnh tương ứng).

b. Tam giác AOD = Tam giác BOC (c - g - c).

=> \(\widehat{OAD}=\widehat{OBC}\) (2 góc tương ứng).

Mà \(\widehat{OAD}+\widehat{DAC}=180^o;\widehat{OBC}+\widehat{CBD}=180^o.\)

=>  \(\widehat{DAC}=\widehat{CBD}.\) 

hay \(\widehat{EAC}=\widehat{EBD}.\)

c) Tam giác AOD = Tam giác BOC (cmt).

=> \(\widehat{ODA}=\widehat{OCB}\) (2 góc tương ứng).

Xét tam giác EBD và tam giác EAC:

\(\widehat{BDE}=\widehat{ACE}\left(\text{​​}\widehat{ODA}=\widehat{OCB}\right).\) (cmt).

+ BD = AC (gt).

\(\widehat{EBD}=\widehat{EAC}\left(cmt\right).\)

=> Tam giác EBD = Tam giác EAC (g - c - g).

=> BE = AE (2 cạnh tương ứng).

Xét tam giác OBE và tam giác OAE:

+ OB = OA (gt).

+ OE chung.

+ BE = AE (cmt).

=> Tam giác OBE = Tam giác OAE (c - c - c).

=> \(\widehat{BOE}=\widehat{AOE}\) (2 góc tương ứng).

=> OE  là phân giác của \(\widehat{xOy}\left(đpcm\right).\)


Các câu hỏi tương tự
Châu Anh Hà Ngọc
Xem chi tiết
@Anh so sad
Xem chi tiết
ミ★ΉảI ĐăПG 7.12★彡
Xem chi tiết
Thanh Thùy Nguyễn
Xem chi tiết
Nguyễn Thị Phương Thúy
Xem chi tiết
Xem chi tiết
Oanh Đỗ
Xem chi tiết
Hùng Anh
Xem chi tiết
Bùi Ngọc Tố Uyên
Xem chi tiết