Cho góc nhọn \(\widehat{AOB}\), vẽ \(\widehat{BOC}\) và \(\widehat{AOD}\) là hai góc kề bù với \(\widehat{AOB}\). Chứng tỏ rằng :
a) Hai góc \(\widehat{BOC}\) và \(\widehat{AOD}\) là hai góc đối đỉnh.b) Hai tia phân giác của hai góc \(\widehat{BOC}\) và \(\widehat{AOD}\) là hai tia đối nhau.Các bạn giúp mình với, nhanh nhé, mình đang cần gấp !!!Ta có hình vẽ:
a) Vì góc AOB và AOD là 2 góc kề bù nên OB và OD là 2 tia đối nhau (1)
Vì góc AOB và BOC là 2 góc kề bù nên OA và OC là 2 tia đối nhau (2)
Từ (1) và (2) => BOC và AOD là 2 góc đối đỉnh (đpcm)
b) Gọi Om, On lần lượt là tia phân giác của AOD và BOC
\(\Rightarrow\begin{cases}AOm=mOD=\frac{AOD}{2}\\BOn=nOC=\frac{BOC}{2}\end{cases}\)
Mà AOD = BOC (đối đỉnh)
Do đó, \(AOm=mOD=BOn=nOC\)
Lại có: AOD + AOB = 180o (kề bù)
=> DOm + mOA + AOB = 180o
=> BOn + mOA + AOB = 180o
Mà BOn, mOA, AOb là các góc tương ứng kề nhau và không có điểm trong chung nên mOn = 180o hay Om và On là 2 tia đối nhau (đpcm)