Biết tan \(\alpha\)=\(\frac{5}{4}\). Tính giá trị lượng giác các góc : \(\left(90^o-\alpha\right)\) và \(\left(180^0-\alpha\right)\)
Cho tam thức f(x) = \(2x^2-3x+1\) . Trong các khẳng định sau , khẳng định nào đúng ?
A,f(x) > 0 với \(\forall x\in\left(\dfrac{1}{2};1\right)\)
B,\(f\left(x\right)>0\) với \(\forall x\in\left(-\infty;1\right)\)
C, f(x) < 0 với \(\forall x\in\left(-\infty;1\right)\cup\left(2;+\infty\right)\)
D,f(x) >0 với \(\forall x\in\left(-\infty;\dfrac{1}{2}\right)\cup\left(1;+\infty\right)\)
Cho \(0< \alpha,\beta< \frac{\pi}{2}\)và \(\left\{{}\begin{matrix}3\sin^2\alpha+2\sin^2\beta=1\\3\sin2\alpha-2\sin2\beta=0\end{matrix}\right.\). Chứng minh rằng: \(\alpha+2\beta=\frac{\pi}{2}\).
Cho \(ax^2+bx+c=0\) có nghiệm, \(f\left(x\right)=\alpha x^2+\beta x+\gamma\) \(\left(a.\alpha\ne0\right)\) có hai nghiệm và khoảng hai nghiệm đó chứa \(\left(0;2\right)\). Chứng minh \(a.f\left(0\right)x^2+b.f\left(1\right)x+c.f\left(2\right)=0\) có nghiệm
tính các giá trị lượng giác của góc x khi biết \(\cos\dfrac{\alpha}{2}=\dfrac{4}{5}\) và 0<x<\(\dfrac{\pi}{2}\)
cm 0<=α<=π thì (2cosα-1)^2-4sin^2(α/2-π/4)>(\(\left(\sqrt{2sin\alpha}-2\right)\left(3-cos2\alpha\right)\)
Mọi đường thẳng của họ \(\left(x-1\right)cos\alpha+\left(y-1\right)sin\alpha=4\) đều tiếp xúc với một đường tròn (C) cố định. Bán kính của (C) là bn?
Cho \(\cos\alpha=-\dfrac{2}{3}\) và \(\dfrac{\pi}{2}< \alpha< \pi\). Biết \(K=\sin2\alpha+cos2\alpha=x+y\sqrt{5}\) với x, y thuộc Q và \(\dfrac{x}{y}=\dfrac{a}{b}\) là phân số tối giản. Tính \(a-b\)
Chứng minh các đẳng thức sau:
1/ \(sin^6\alpha+cos^6\alpha=\frac{5}{8}+\frac{3}{8}cos4\alpha\)
2/\(\frac{1+sin2\alpha-cos2\alpha}{1+cos2\alpha}=tan\alpha+tan^2\alpha\)