\(f\left(x\right)-g\left(x\right)\)
\(=\left(x^{2n}-x^{2n-1}+...+x^2-x+1\right)-\left(-x^{2n+1}+x^{2n}-x^{2n-1}+...+x^2-x+1\right)\)
\(=x^{2n}-x^{2n-1}+...+x^2-x+1+x^{2n+1}-x^{2n}+x^{2n-1}-...-x^2+x-1\)
\(=x^{2n+1}+\left(x^{2n}-x^{2n}\right)+\left(-x^{2n-1}+x^{2n-1}\right)+...+\left(x^2-x^2\right)+...+\left(-x+x\right)+\left(1-1\right)\)
\(=x^{2n+1}+0+0+...+0+0+0\)
\(=x^{2n+1}\)
( Thay \(x=\dfrac{1}{10}\) vào đa thức trên)
\(\Rightarrow f\left(x\right)-g\left(x\right)=\left(\dfrac{1}{10}\right)^{2n+1}\)
Vậy \(f\left(x\right)-g\left(x\right)=\left(\dfrac{1}{10}\right)^{2n+1}\)
Ta có:f(x)-g(x)=(x2n-x2n-1+.........+x2-x+1)-(x2n+1+x2n-x2n-1+..........+x2-x+1)
=x2n-x2n-1+..........+x2-x+1+x2n+1-x2n+x2n-1-.......-x2+x-1
=(x2n-x2n)+(-x2n-1+x2n-1)+.......+(x2-x2)+(-x+x)+(1-1)+x2n+1
=0+x2n+1
=x2n+1
Thay x=\(\dfrac{1}{10}\)vào ta có:
(\(\dfrac{1}{10}\))2n+1=(\(\dfrac{1}{10}\))2n.\(\dfrac{1}{10}\)=\(\dfrac{1}{10^{2n}}\).\(\dfrac{1}{10}\)=\(\dfrac{1}{10^{2n+1}}\)
Vậy giá trị của hiệu f(x)-g(x) tại x=\(\dfrac{1}{10}\) là \(\dfrac{1}{10^{2n+1}}\)