Lời giải:
\(f(x)>0\Leftrightarrow 2x-4>0\Leftrightarrow 2x>4\Leftrightarrow x>2\) hay \(x\in (2;+\infty)\)
Suy ra khẳng định $a$ đúng
Lời giải:
\(f(x)>0\Leftrightarrow 2x-4>0\Leftrightarrow 2x>4\Leftrightarrow x>2\) hay \(x\in (2;+\infty)\)
Suy ra khẳng định $a$ đúng
Tìm giá trị nhỏ nhất của hàm số \(f\left(x\right)=\frac{2x^2+4}{x}\)với \(x\in\left(0;^+\infty\right)\)
Cho f(x) = ax2 + bx + c (a \(\ne\) 0)
Tìm a, Δ trong các trường hợp sau:
a) f(x) > 0 có nghiệm \(\Leftrightarrow\)
b) f(x) \(\ge\) 0 có nghiệm \(\Leftrightarrow\)
c) f(x) < 0 có nghiệm \(\Leftrightarrow\)
d) f(x) \(\le\) 0 có nghiệm \(\Leftrightarrow\)
Cho biểu thức f(x)= ax-4 . Biết f(x) < 0 với x \(\varepsilon\left(-\infty;8\right)\) . tìm a?
\(Cm:x_1< \alpha< \beta< x_2\Leftrightarrow\left\{{}\begin{matrix}a.f\left(\alpha\right)< 0\\a.f\left(\beta\right)< 0\end{matrix}\right.\)
Cho các số thực \(\alpha,\beta\)
và \(f\left(x\right)=ax^2+bx+c\left(a\ne0\right)\)
1.Cho \(f\left(x\right)=mx^2+\left(4m-3\right)x+4m-6\). Tìm m để bất phương trình \(f\left(x\right)\ge0\) đúng với \(\forall x\in\left(-1;2\right)\)
2. Cho bất phương trình \(x^2-4x+2|x-3|-m< 0\). Tìm m để bất phương trình đã cho đúng với \(\forall x\in\left[1;4\right]\)
Cho biểu thức f(x) = (-x + 1)(x - 2). Khẳng định nào sau đây đúng: A. f(x) < 0, ∀x ∈ (1; +∞) B. f(x) < 0, ∀x ∈ (-∞; 2) C. f(x) > 0, ∀x ∈ R D. f(x) > 0, ∀x ∈ (1; 2)
Tìm tất cả các hàm số f(x) thỏa mãn điều kiện \(f\left(2010-f\left(0\right)\right)=2010x^2\) \(\forall x\in R\)
Tìm tất cả các giá trị m để
a) \(mx+6< 2x+3m\) thỏa mãn m<2
b) \(m\left(2x-1\right)\ge2x+1\) có tập nghiệm là \([1;+\infty)\)
c) \(2x-m< 3\left(x-1\right)\) có tập nghiệm là \(\left(4;+\infty\right)\)
d) \(mx+4>0\) đúng với mọi \(\left|x\right|< 8\)
ycbt\(\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta^{phay}\le0\end{matrix}\right.hay\left\{{}\begin{matrix}-1< 0\\a^2-\left[\left(-1\right)\left(-a+2a-6\right)\right]\le0\end{matrix}\right.\)
\(\Leftrightarrow a^2+a-6\le0\Leftrightarrow-3\le a\le2\)\(\Rightarrow a\in\left[-3;2\right]\)