\(\Delta'=\left(m+5\right)^2-10m-24=m^2+1>0;\forall m\)
\(\Rightarrow f\left(x\right)=0\) luôn có 2 nghiệm pb với mọi m và: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+5\right)\\x_1x_2=10m+24\end{matrix}\right.\)
Để \(f\left(x\right)>0;\forall x>2\)
\(\Leftrightarrow x_1< x_2< 2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10m+24-4\left(m+5\right)+4>0\\2\left(m+5\right)< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{4}{3}\\m< -3\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn