Ôn tập cuối năm môn Hình học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho elip (E0 có phương trình : \(9x^2+25y^2=225\)

a) Tìm tọa độ các tiêu điểm và các đỉnh của (E)

b) Tìm tọa độ các điểm M thuộc (E) sao cho M nhìn hai tiêu điểm \(F_1\)  và \(F_2\) của (E) dưới một góc vuông

Xuân Tuấn Trịnh
26 tháng 4 2017 lúc 22:09

F1 F2 A1 A2 B2 B1 y x o

Viết lại phương trình (E):\(\dfrac{x^2}{25}+\dfrac{y^2}{9}=1\)

a) Từ phương trình ta có: a2=25=>a=5 =>A1(-5;0) A2(5;0)

b2=9=>b=3 =>B1(0;-3) B2(0;3)

c2=a2-b2=25-9=16 =>c=4

=> F1(-4;0) F2(4;0)

b) Giả sử tọa độ điểm M(m;n)

MF1 góc với MF2 => (m+4)(m-4) + n2=0

<=> m2+n2=16 =>9m2+9n2=144(1)

Do M thuộc (E) nên 9m2+25n2=225(2)

Trừ vế với vế của (2) cho (1) ta được 16n2=81

=> \(n=_-^+\dfrac{9}{4}\)

với n\(=\dfrac{9}{4}\)=> m=\(\dfrac{5\sqrt{7}}{4}\)

với n\(=-\dfrac{9}{4}\)=> m\(=\dfrac{5\sqrt{7}}{4}\)

Vậy tọa độ M thỏa mãn là \(\left(\dfrac{5\sqrt{7}}{4};\dfrac{9}{4}\right)\)\(\left(\dfrac{5\sqrt{7}}{4};-\dfrac{9}{4}\right)\)


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết