ác cao nhân hãy giúp tui!!!!!!!! đề bài: cho tam giác ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BA=BE. vẽ DH và EK cùng vuông góc với đường thẳng BC. Chứng minh: a) HB=CK b) góc AHB= góc AKC c) HK//DE d) tam giác AHE= tam giác AKD e) AI vuông với DE, I là giao điểm của DK và EH
Cho tam giác ABC nhọn,AH là đường cao. Vẽ ra phía ngoài tam giác ABC tam giác ABD vuông cân tại B và tam giác ACE vuông cân tại C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC.CMR"
a)tam giác DBC=tam giác BAK.
b)DC vuông góc với KB.
c)CD,KH,EB đồng quy tại 1 điểm
cho tam giác ABC cân tại A có đường cao AH,CK cắt nhau tại G.a, CM BH=CK.b, CM GBC CÂN.c,gọi i là trung điểm AB ,trên tia đối IG Lấy e sao cho IG=IE.CM BE vuông góc BC
Cho tam giác ABC vuông tại A . Trên tia đối của tia AB lấy D sao cho AD=AB a) CM: Tam giác CBD là tam giác cân b) gọi M là trung điểm của CD đường thẳng qua D và // với BC cắt đường thẳng BM tại E. Cm: BC= DE vã BC+BD>BE c) gọi G là giao điểm. Của AE và DM. Cm: BC=6GM
Cho tam giác ABC vuông tại A có AB < AC , trung tuyến AM . Trên tia đối của tia MA lấy điểm I sao cho M là trung điểm của AD .
a ) Chứng minh tam giác ABM = tam giác DCM và AB // CD . b ) Chứng minh AD = BC và AM = 1 / 2BC .
c ) Kẻ đường cao AH của tam giác ABC ( H thuộc BC ) . Trên tia AH lấy điểm K sao cho AH = HK . C / m : BH =CK .
Cho ABC ( Â=90o) có BD là tia phân giác góc B ( D ∈ AC ). Trên tia BC lấy điểm E sao cho BA = BE
a) Chứng minh : DE ⊥ BE
b) Chứng minh: BD là đường trung trực của AE
c) Kẻ AH ⊥ BC . So sánh EH và EC
Cho ABC ∆ cân tại A, kẻ AH vuông góc với BC tại H. a/ Chứng minh: AHB AHC ∆ =∆và AH là tia phân giác của BAC b/ Từ H kẻ HM AB ⊥ , HN AC ⊥ ( ∈∈ M AB, N AC), AH cắt MN tại K. Chứng minh: AH MN ⊥ c/ Trên tia đối của tia HM lấy HP sao cho H là trung điểm của MP, NP cắt BC tại E, NH cắt ME tại Q. Chứng minh: P, Q, K thẳng hàng
Bài 11: Cho tam giác ABC có AB=AC. Gọi M là trung điểm của BC. Chứng minh rằng:
a. AMB = AMC
b. AM là tia phân giác của góc
c. AM ⊥ BC
d. Vẽ At là tia phân giác của góc ngoài ở đỉnh A. Chứng minh:At//BC
Bài 12: Cho tam giác ABC, = 900. Trên BC lấy E sao cho BE = BA. Tia phân giác của góc B cắt AC ở D.
a. Chứng minh Δ ABD = Δ EBD
b. Tính số đo góc BED
c. Chứng minh BD ⊥ AE
Bài 13: Cho tam giác ABC, D là trung điểm của AB, E là trung điểm của AC. Vẽ F sao cho E là trung điểm của DF. Chứng minh:
a. ADE = CFE
b. DB = CF
c. AB // CF
d. DE // BC
Bài 14: Cho tam giác ABC có BA<BC. Trên tia BA lấy điểm D sao cho BD = BC.Tia phân giác của góc B cắt AC và DC lần lượt tại E và I.
a. Chứng minh rằng: ΔBEC =Δ BED
b. Chứng minh ID = IC
c. Từ A kẻ AH DC, H. Chứng minh: AH // BI
Bài 15: Cho tam giác ABC. Trên tia đối AB lấy D sao cho AD = AB, trên tia đối AC lấy điểm E sao cho AE = AC.
a. Chứng minh rằng: BE = CD
b. Chứng minh: BE//CD
c. Gọi M là trung điểm của BE và N là trung điểm của CD. Chứng minh:AM = AN
Cho tam giácABC cân tại A, kẻ AH vuông góc với BC tại H. a) Chứng minh tam giacs AHB = ta mgiacs AHC, từ đó suy ra Half trung điểm của BC b) Trên tia đối của tia AB lấy điểm E sao cho AB = AE. Gọi G là giao điểm của AC và HE, I là giao điểm của BG và EC. Chứng minh I là trung điểm của EC và AI vuông góc với EC c) Chứng minh EC // AH