Dễ thấy AD, BE, CF là các đường kính của (O).
Do đó: \(MA^2+MB^2+MC^2+MD^2+ME^2+MF^2=\left(MA^2+MD^2\right)+\left(MB^2+ME^2\right)+\left(MC^2+MF^2\right)=AD^2+BE^2+CF^2=4R^2+4R^2+4R^2=12R^2\).
Dễ thấy AD, BE, CF là các đường kính của (O).
Do đó: \(MA^2+MB^2+MC^2+MD^2+ME^2+MF^2=\left(MA^2+MD^2\right)+\left(MB^2+ME^2\right)+\left(MC^2+MF^2\right)=AD^2+BE^2+CF^2=4R^2+4R^2+4R^2=12R^2\).
Cho đường tròn tâm (O), bán kính R ngoại tiếp đa giác dêdu của đường tròn A. Tính bán kính của đường tròn ngoại tiếp đa giác đó (A;R) trong trường hợp a, đa giác là tam giác đều b, đa giác là hình vuông c, đa giác là lục giác đều
a) Vẽ tam giác đều ABC cạnh a = 3 cm.
b) Vẽ tiếp đường tròn (O; R) ngoại tiếp tam giác đều ABC. Tính R.
c) Vẽ tiếp đường tròn (O; r) nội tiếp tam giác đều ABC. Tính r.
d) Vẽ tiếp tam giác đều IJK ngoại tiếp đường tròn (O ; R).
Cho đường tròn tâm O bán kính R và điểm M ở ngoài đường tròn đó. Qua điểm M kẻ hai tiếp tuyến MA, MB với đường tròn (O). Qua điểm M kẻ cát tuyến MCD với đường tròn (O), tức là đường thẳng đi qua điểm M và cắt đường tròn tại hai điểm là C, D). Gọi I là trung điểm của dây CD, Khi đó MAOIB có là ngũ giác nội tiếp hay không ?
Mỗi câu sau đây đúng hay sai ?
a) Mỗi tam giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp
b) Mỗi tứ giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp
c) Giao điểm ba đường trung tuyến của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy
d) Giao điểm ba đường trung trực của một tam giác là tâm đường tròn nội tiếp tam giác ấy
e) Giao điểm ba đường phân giác của một tam giác là tâm đường tròn nội tiếp tam giác ấy
f) Giao điểm ba đường cao của một tam giác là tâm đường tròn nội tiếp tam giác ấy
g) Tứ giác có tổng độ dài các cặp cạnh đối bằng nhau thì ngoại tiếp được đường tròn
h) Tứ giác có tổng số đo các cặp góc (trong) đối nhau bằng nhau thì nội tiếp được đường tròn
i) Đường tròn tiếp xúc với các đường thẳng chứa các cạnh của tam giác là đường tròn nội tiếp tam giác đó
Cho đường tròn (O;R) và một điểm S nằm bên ngoài đường tròn. Kẻ các tiếp tuyến SA,SB của đường tròn (O;R) (với A,B là tiếp điểm). Đường thẳng a đi qua S (không đi qua tâm O) cắt đường tròn(O;R) tại hai điểm M,N (M nằm giữ S và N). a) CM: SO ⊥ AB b) Gọi I là trung điểm của MN và H là giao điểm của SO,AB ;hai đường thẳng OI và AB cắt nahu tại E.CM: OI.OE=R2 (vẽ hộ em hình luôn ạ)
Vẽ hình lục giác đều, hình vuông, tam giác đều cùng nội tiếp đường tròn (O; R) rồi tính cạnh của các hình đó theo R.
Cho tam giác nhọn nội tiếp đường tròn tâm . Trên cung nhỏ lấy điểm sao cho không là đường kính ( không trùng ). Gọi lần lượt là hình chiếu của điểm trên các đường thẳng . Chứng minh ba điểm thẳng hàng.
Cho tam giác ABC có ba góc nhon, đường cao AH và nội tiếp đường tròn tâm O, đường kính AM.
a) tính góc ACM
b) Chứng minh góc BAH=góc OCA
c) Gọi N là giao điểm AH với đường tròn (O). Tứ giác BCMN là hình gì ? Vì sao?
Cho đường tròn tâm O bán kính R=6cm và điểm A cách O một khoảng 10cm từ A vẽ tiếp tuyến AB ( B là tiếp điểm) và cát tuyến bất kỳ ADC ( C nằm giữa A và D) gọi I là trung điểm của đoạn CD
a) tính độ dài AB, số đo góc OAB
b) chứng minh: bốn điểm A,B,O và I cùng thuộc 1 đường tròn
c) chứng minh: AC.AD=AI^2-IC^2. Từ đó suy ra tính AC.AD không đổi khi C thay đổi trên đường tròn (O)