Cho đường tròn tâm O đường kính AB, trên cùng một nửa đường tròn (O) lấy hai điểm G và E ( theo thứ tự A,G,E,D) sao cho tia EG cắt tia BA tại D. Đg thẳng vuông góc với BD tại D cắt BE tại C, đg thẳng CA cắt đg tròn (O) tại điểm thứ hai là F. Chứng minh tứ giác EADC nội tiếp
Giúp mjk vs mjk đg cần gấp ạ
Em tự vẽ hình nhé!
Có: \(\widehat{CDA}=90^o\)
\(\widehat{CEA}=\widehat{BEA}=90^o\)
\(\Rightarrow\widehat{CDA}+\widehat{CEA}=90^o+90^o=180^o\)
Do đó: tứ giác EADC nội tiếp.