Từ A ngoài (O) vẽ tiếp tuyến AB, AC đến (O). Kẻ đường kính DB, vẽ CE DB, AD cắt CE tại I. a. Chứng minh AC.CD = CE.AO. b. Chứng minh I là trung điểm CE. c. Biết OA = 2R. Chứng minh ABC đều và tính BCE S theo R d. Trên tia đối của BC lấy S. Từ S vẽ 2 tiếp tuyến SM, SN đến (O). Chứng minh: 3 điểm A, M, N thẳng hàng.
Cho đường tròn O, đường kính AB=2R. Gọi M là 1 điểm thuộc đường tròn sao cho BM=R. Trên tia đối của tia BA xác định điểm C sao cho BC cũng bằng R. Qua C kẻ đường thẳng vuông góc với BC cắt AM tại D
a) Chứng minh 3 điểm O,C,M cùng thuộc 1 đường tròn
b) Chứng minh AM.AD=6R^2
c) Tính AD theo R
a) Cho nửa đường tròn tâm O, đường kính AB, dây CD. Các đường vuông góc với CD tại C và D tương ứng cắt AB ở M và N. Chứng minh rằng AM = BN
b) Cho nửa đường tròn tâm O, đường kính AB. Trên AB lấy các điểm M, N sao cho AM = BN. Qua M và qua N kẻ các đường thẳng song song với nhau, chúng cắt nửa đường tròn lần lượt ở C và D. Chứng minh rằng MC và ND vuông góc với CD
Cho đường tròn tâm O, đường kính AB. Lấy hai điểm C và D theo thứ tụ trên cung AB. Hai đường thẳng AC và BD cắt nhau tại M. Chứng minh đường kính đường tròn ngoại tiếp tam giác MCD vuông góc với AB
Cho đường tròn (O; R), dây AB khác đường kính . Vẽ về hai phía của AB các dây AC, AD. Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ B đến AC và AD. Chứng minh rằng :
a) Bốn điểm A, H, B, K thuộc cùng một đường tròn
b) HK < 2R
b) Đường thẳng OP là tiếp tuyến của đường tròn ngoại tiếp tam giác MNP. Cho nửa đường tròn (O) đường kính AB và một điểm P trên nửa đường tròn. Gọi Q là một điểm trên đường kính AB. Qua Q kẻ đường vuông góc với AB cắt BP tại M, cắt AP tại N. Tiếp tuyến của nửa đường tròn ở P cắt MN ở I. Chứng minh: a) Tứ giác QNPB và AQPM là các tứ giác nội tiếp
cho hai đường tròn (O;r) và (O;R) với R>r.Hai dây AB,CD thuộc đường tròn (O;r) sao cho AB>CD. Đường thẳng AB cắt (O;R) tại M và N, đường thẳng CD cắt(O,R) tại H và K.Kẻ OI vuông góc với AB (I thuộc AB),OJ vuông góc với CD(J thuộc CD). So sánh các độ dài:
a) OI và OJ b) MN và HK
Cho đường tròn (O), đường kính AD = 2R. Vẽ cung tâm D bán kính R, cung nàu cắt đường tròn (O) ở B và C
a) Tứ giác OBCD là hình gì ? Vì sao ?
b) Tính số đo các góc CBD, CBO, OBA ?
c) Chứng minh rằng tam giác ABC là tam giác đều ?