Cho đường tròn (O;R) đươngg kính AB cố định và đường kính CD thay đổi. Tiếp tuyến với đường tròn (O) tại B cắt AC tại E, AD tại F. Tìm tập hợp trực tâm các tam giác CEF và DEF
cho (O;R), a nằm ngoài (O). từ A vẽ các tiếp tuyên AB,AC vs đường tròn
a, QUa O vẽ đường thẳng vuông góc vs OA cắt AB,AC lần lượt tị P và Q .cm PM.PQ=PQ^2/4
Cho đường tròn (O), đường kính AB. Trên tiếp tuyến của đường tròn (O) tại A lấy điểm C (C khác A). Từ C vẽ tiếp tuyến thứ 2 CD của (O). Kẻ DK ⊥ AB( K ∈ AB), BC cắt (O) tại điểm thứ 2 là M và cắt DK tại N.
Cm: N là trung điểm DK
Cho hình thang vuông ABCD đường cao AB = h, AD = a, BC = b. Tìm điều kiện để
a) AC vuông góc DB
b) Góc AIB = 90 độ với I là trung điểm của CD
Bài 1: Cho ABC vuông tại A có đường cao AH. Biết AB = 20cm, AC = 15cm. a) Chứng minh: ABC HBA.Tính độ dài BC, AH b) Qua C vẽ đường thẳng song song với AB và cắt AH tại F. Chứng minh: AC2 = AB. FC c) Gọi I ; J lần lượt là trung điểm AB và CF. Chứng minh: I ; H; J thẳng hàng
Cho tam giác ABC. Các đường phân giác của các góc ngoài tại B và C cắt nhau ở K. Qua K kẻ đường thẳng vuông góc với AB, cắt đường thẳng AB ở E. Qua K kẻ đường thẳng vuông góc với AC, cắt đường thẳng AC ở F. Chứng minh BD = AE, AD = CE
Bài 2. Cho ΔABC vuông cân tại A. Kẻ đường cao AD.
a) Tính số đo góc C và chứng minh BD = CD
b) Gọi M là trung điểm BD, đường thẳng vuông góc với BC tại B cắt tia AM tại E.
Chứng minh ΔBME = ΔAMD
c) Chứng minh ED = AC
Bài 3. Cho ΔABC vuông tại A có AB < AC, AH là đường cao (H ∈BC). Trên cạnh
BC lấy điểm M sao cho CM = CA. Vẽ MK vuông góc với AC (K∈ AC)
a) Chứng minh ΔACM cân và ΔCKM =ΔCHA
b) Hai đoạn thẳng MK và AH cắt nhau tại O. Chứng minh CO là tia phân giác của
ACB
c) Trên cạnh AB lấy điểm N sao cho AN = AH. Chứng minh MN vuông góc với
AB.
Bài 4. Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Lấy điểm K sao
cho H là trung điểm của AK.
a. Chứng minh ΔABK cân và Δ ACK cân.
b. Qua A kẻ tia Ax // BC, qua C kẻ tia Cy // AH. Tia Ax cắt tia Cy tại E.
Chứng minh: AH = CE và AE ⊥ CE.
c. Gọi giao điểm của AC và HE là I; CH và IK là Q; M là trung điểm của KC.
Chứng minh: A; Q; M thẳng hàng.
d. Tìm điều kiện của ΔABC để AB//QK.
Giúp mik với mik đang cần gấp
Cho tam giác ABC hai đường cao BE,CF cắt nhau ở H.Tia AH cắt BC tại D.Gọi Q là điểm đối xứng của H qua D.Chứng minh:
a)Tứ giác AEHF nôi tiếp
b)Tứ giác ABQC nội tiếp