Câu 3: Trang 131 sách VNEN 9 tập 1 Cho hai đường tròn (O; R) và (O'; R') cắt nhau tại A và B (R > R'). Gọi M là trung điểm của OO'. Kẻ đường thẳng vuông góc với MA tại A, đường thẳng này cắt các đường tròn (O; R) và (O'; R') theo thứ tự tại C và D (khác A). a) Chứng minh rằng AC = AD. b) Lấy K sao cho M là trung điểm của AK. Chứng minh rằng KB vuông góc với AB. c) Kẻ đường kính AE của đường tròn (O) và đường kính AF của (O'). Chứng minh rằng bốn điểm E, K, B, F thẳng hàng và OO' song song với EF. d) Chứng minh K là trung điểm của EF.
Cho hai dường tròn (O) và (O) cắt nhau tại A và B. Vẽ các đường kính AOC và AOO'D.Dường thẳng AC cắt đường tròn (O) tại E. Dường thẳng AD cắt đường tròn (O) tại F. Chứng minh rằng: a. Ba điểm C, B, D thẳng hàng. b. Tứ giác CDEF nội tiếp. C. A là tâm đường tròn (hoặc bàng tiếp)của tam giác BEE.
Cho (O;R).A nằm ngoài đường tròn sao cho OA=2R.Kẻ tiếp tuyến AB và AC với (O) (B,C là tiếp điểm) Đoạn thẳng OA cắt (O) tại I đường thẳng qua O và vuông góc với OB cắt AC tại K a) chứng minh tam giác OAK cân tại A b)CB vuông góc với OA c) Đường thẳng KI cắt AB tại M. Chứng minh KM là tiếp tuyến của (O)
cho tam giác đều ABC nội tiếp đường tròn (O;R) đường thẳng vuông góc với AC cắt (O) tại D cắt tiếp tuyến qua C của đường tròn O tại E. Gọi M là trung điểm của CE và F là giao điểm của AC và BD a) CM:AM là tiếp tuyến đường tròn(O) b) tứ giác AMCB là hình gì? Vì sao? c) CM: C,O,D thẳng hàng d) CM: BD//EF e) CM: B,D,C,F thuộc 1 đường tròn
Cho nửa đường tròn tâm O bán kính R đường kính AB, H là trung điểm của OA. Qua H vẽ đường thẳng vuông góc với OA cắt nửa đường tròn tâm O tại C. Gọi E và F là hình chiếu vuông góc của H trên AC và BC. d) Đường thẳng EF cắt nửa đường tròn tâm O tại M,N. Chứng minh rằng CM = CN
Cho đường tròn (O;R), đường kính AB vuông góc với dây cung MN tại H (H nằm giữa O và B). Trên tia đối NM lấy điểm C nằm ngoài đường tròn (O;R) sao cho đoạn thẳng AC cắt đương tròn tại k khác A. Hai day MN và BK cắt nhau ở E. Qua N kẻ đường thẳng vuông góc với AC cắt tia MK tại F.
a) Chứng minh tứ giác AHEK nội tiếp.
b) Chứng minh tam giác NFK cân và EM. NC = EN. CM.
c) Giả sử KE = KC. Chứng minh OK// MN và KM2 + KN2 = 4R2