Bài 8: Đường tròn nội tiếp. Đường tròn ngoại tiếp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Phương Anh

Cho đường tròn ( O, R ) và một điểm S ở ngoài đường tròn. Vẽ hai tiếp tuyến SA, SB ( A, B là các tiếp điểm). Vẽ đường thẳng a đi qua S và cắt đường tròn ( O ) tại M và N, với M nằm giữa S và N ( đường thẳng a không đi qua tâm O )

a) Chứng minh : SO vuông góc AB

b) Gọi H là giao điểm SO và AB; gọi I là trung điểm của MN. Hai đường thẳng OI và AB cắt nhau tại E. Chứng minh rằng IHSE là tứ giác nội tiếp đường tròn

Giải giúp mình với! Có hình vẽ nữa nhé các bạn

Havee_😘💗
12 tháng 1 2020 lúc 17:33

a) Có SA, SB là hai tiếp tuyến thuộc (O,R).
Suy ra SA = SB ( tính chất của tiếp tuyến cắt nhau)
Ta cũng có : OA = OB = R.
Suy ra : OS thuộc vào đường trung trực của AB
Suy ra : OS ⊥ AB. (dpcm) Suy ra: ∠SHE = 90°
b) M, N ∈ (O)
Suy ra MN là dây cung của (O,R).
Mà I là trung điểm của dây MN.
Suy ra : OI ⊥ MN (tính chất vuông góc ) Suy ra ∠EIS = 90°
Xét tứ giác IHSE, có : ∠EIS và ∠SHE là hai góc kề nhau cùng nhìn cạnh ES dưới một góc bằng 90°.
Suy ra : tứ giác IHSE là tứ giác nội tiếp (dhnb).

Khách vãng lai đã xóa

Các câu hỏi tương tự
son nguyen van
Xem chi tiết
hello sun
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Hùng Khuất
Xem chi tiết
Vang Phan
Xem chi tiết
Đinh Bảo Ngân
Xem chi tiết
Quangquang
Xem chi tiết
Minh Thư.
Xem chi tiết
QuocSon
Xem chi tiết