Bài 14: Cho đường tròn (O;R) Lấy M cách O một khoảng cách = 2R. Từ M kẻ các tiếp tuyến MA và MB với đường tròn (A và B là các tiếp điểm). Đoạn thẳng OM cắt đường tròn (O) tại C. Đường Thẳng qua O và vuông góc với OB cắt OA tại D. Đường thẳng DC cắt MB tại điểm E.
a) Chứng minh Tam giác MAB là Tam giác đều
b) Chứng minh rằng Tam giác DMO cân tại D
c) Chứng minh rằng DE là tiếp tuyến của đường tròn (O)
Cho đường tròn tâm O, bán kính R và M là một điểm nằm bên ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm). Gọi E là giao điểm của AB và OM.
a) Chứng minh tứ giác MAOB nội tiếp được trong một đường tròn.
b) Tính độ dài đoạn thẳng AB và ME biết OM = 5cm và R = 3cm.
c) Kẻ tia Mx nằm trong góc AMO cắt đường tròn tại 2 điểm phân biệt C và D (C nằm giữa M và D). Chứng minh rằng góc MEC = góc OED
Cho đường tròn (O;R) và đường thẳng d cố định, sao cho khoảng cách từ tâm O đến đường thẳng d lớn hơn bán kính R của đường tròn O. Trên đường thẳng d lấy điểm M bất kỳ. Từ M kẻ MC là tiếp tuyến của đường tròn (O;R), C là tiếp điểm. Vẽ CH vuông góc với OM tại H, cắt (O;R) tại B.
a) Cho biết vị trí tương đối của đường tròn (O;R) và đường thẳng d? Giải thích vì sao?
b) Chứng minh: MB là tiếp tuyến của (O;R)
c) Chứng minh rằng: Khi điểm M di chuyển trên đường thẳng d thì đoạn thẳng BC luôn đi qua 1 điểm cố định.
cho đường tròn tâm (o) từ điểm M nằm ngoài đường tròn kẻ hai tiếp tuyến MA,MB với đườn tròn (o)(A và B là hai tiếp tuyến).Gọi I là giao điểm của OM và AB; từ B kẻ đườn kính BC của đường tròn(o),đường thẳng MC cắt đường tròn (o) tai D (D khác C)
a)Chứng minh:4 điểm M,A,O,B cùng thuộc một đường tròn
b)Chứng minh:OM vuông với AB và MD.MC=MI.MO
c)Qua O vẽ đường thẳng vuông góc với MC tại E và cắt đường thẳng BA tại F. Chứng minh: FC là tiếp tuyến của đường tròn (O)
Cho 3 điểm A,B,C theo thứ tự đó nằm trên cùng một đường thẳng. Vẽ đường tròn ( O;R ) có đường kính là BC. Từ A kẻ tiếp tuyến AM với đường tròn ( O ),( M là tiếp điểm). Tiếp tuyến tại B của đường tròn ( O ) cắt AM tại D. Từ O kẻ đường thẳng vuông góc với OD cắt đường thẳng AM ở E. Chứng minh rằng:
a) MD × ME=R ²
b) EC là tiếp tuyến của đường tròn ( O )
c) DM×AE=AD×EM
Cho nửa đường tròn O có đường kính AB. Gọi M là điểm bất kì thuộc nửa đường tròn, H là chân đường vuông góc kẻ từ M đến AB. Vẽ đường tròn (M; MH). Kẻ các tiếp tuyến AC, BD với đường tròn tâm M( C và D là các tiếp điểm khác H)
a) Chứng minh rằng ba điểm C, M, D thẳng hàng và CD là tiếp tuyến của đường tròn (O)
b) Chứng minh rằng khi điểm M di chuyển trên nửa đường tròn (O) thì tổng AC + BD không đổi
c) Giả sử CD và AB cắt nhau tại I. Chứng minh rằng tích OH.OI không đổi
Cho đường tròn tâm O bán kính R và đường thẳng d cố định không cắt đường tròn . Từ điểm A bất kì trên đường thẳng d kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm) . Từ B kẻ đường thẳng vuông góc với OH tại H , trên tia đối của tia HB lấy điểm C sao cho HC=HB.
A,Chứng minh điểm C thuộc (O;R) và AC là tiếp tuyến của đường tròn (O)
B,Từ O kẻ đường thẳng vuông góc với đường thẳng d tại I , OI cắt BC tại IC. Chứng minh OH.OA=OI.OK=R^2
Cho đường tròn tâm (O) và điểm K nằm ngoài đường tròn. Từ K kẻ các tiếp tuyến KA,KB đến (O). Một đường thẳng qua K cắt (O) tại C,D sao cho C nằm giữa K và D, đồng thời hai điểm O, A nằm khác phía so với CD. a) CM tứ giác OAKB nội tiếp và KA2= KC.KD b) Gọi M là giao điểm của đoạn OK và AB. CM góc KMC=KDO c) Kẻ đường kính AI của (O). Gọi G, N lần lượt là giao điểm của OK với các đoạn CI, DI. Chứng minh tứ giác AMND nội tiếp và OG=ON.
Cho đường tròn tâm (O) và điểm K nằm ngoài đường tròn. Từ K kẻ các tiếp tuyến KA,KB đến (O). Một đường thẳng qua K cắt (O) tại C,D sao cho C nằm giữa K và D, đồng thời hai điểm O, A nằm khác phía so với CD.
a) CM tứ giác OAKB nội tiếp và KA2= KC.KD
b) Gọi M là giao điểm của đoạn OK và AB. CM góc KMC=KDO
c) Kẻ đường kính AI của (O). Gọi G, N lần lượt là giao điểm của OK với các đoạn CI, DI. Chứng minh tứ giác AMND nội tiếp và OG=ON.