1. Cho tam giác ABC nội tiếp đường tròn tâm O, bán kính R = 3cm. Tính diện tích hình quạt tạo bởi hai bán kính OB,OC và cung nhỏ BC khi \(\widehat{BAC}=60^o\)
2. Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm nội tiếp đường tròn (O). Tính diện tích hình tròn (O)
Cho tam giác ABC vuông ở A và đường cao AH. Vẽ đường tròn tâm O đường kính AB. Biết BH = 2cm, HC = 6cm. Tính :
a) Diện tích hình tròn (O)
b) Tổng diện tích hai hình viên phân AmH và BnH (ứng với các cung nhỏ)
c) Diện tích hình quạt tròn AOH (ứng với cung nhỏ AH)
Cho tam giác ABC nội tiếp đường tròn (O; R) có \(\widehat{C}=45^0\) :
a) Tính diện tích hình quạt tròn AOB (ứng với cung nhỏ AB)
b) Tính diện tích hình viên phân AmB (ứng với cung nhỏ AB)
Tính diện tích một hình quạt tròn có bán kính 6 cm, số đo cung là 36o.
Cho tam giác ABC nội tiếp đường tròn tâm O, bán kính R = 3cm. Tính diện tích hình tròn giới hạn tạo bởi hai bán kính OB,OC và cung nhỏ BC khi \(\widehat{BAC}=60^0\)
Lấy cạnh BC của một tam giác đều làm đường kính, vẽ một nửa đường tròn về cùng một phía với tam giác ấy đối với đường thẳng BC. Cho biết cạnh BC = a, hãy tính diện tích của hai hình viên phân được tạo thành.
Từ điểm Anằm bên ngoài đường tròn O kẻ hai tiếp tuyến AB AC tới đường tròn (B,C là các điểm )>kẻ đường kính BK .Biết BAC=30độ số đo của cung nhỏ CK là
Hình viên phân là phần hình tròn giới hạn bởi một cung và dây căng cung ấy. Hãy tính diện tích hình viên phân AmB, biết góc ở tâm \(\widehat{AOB}=60^o\) và bán kính đường tròn là 5,1 cm.
Điền vào ô trống trong bảng sau (làm tròn kết quả đến chữ số thập phân thứ nhất):
Bán kính đường tròn (R) | Độ dài đường tròn (C) | Diện tích hình tròn (S) | Số đo của cung tròn (no) | Diện tích hình quạt tròn cung no |
13,2 cm | 47,5o | |||
2,5 cm | 12,50 cm2 | |||
37,80 cm2 | 10,60 cm2 |