Do ^ACB = ^AEB = 900 ( góc nt chắn nửa đường tròn )
=> ^FCD = ^FED = 900
Xét tứ giác FCDE có :
^FCD + ^FCD = 1800
mà 2 góc này đối
Vậy tứ giác FCDE là tứ giác nt 1 đường tròn
Do ^ACB = ^AEB = 900 ( góc nt chắn nửa đường tròn )
=> ^FCD = ^FED = 900
Xét tứ giác FCDE có :
^FCD + ^FCD = 1800
mà 2 góc này đối
Vậy tứ giác FCDE là tứ giác nt 1 đường tròn
cho đường tròn (o;r) và một điểm a nằm ngoài đường tròn vẽ 2 tiếp tuyến ab, ac. oa cắt bc tại h, kẻ dây cd//ab. nối ad cắt (o) tại điểm thứ hai là e, ce cắt ab tại i. cm tứ giác ehod nội tiếp
1.Cho nửa đường tròn (O) có đường kính BC và dây cung EF sao cho các điểm F,C nằm khác phía so với đường thẳng BE. Hai dây cung BE,CF cắt nhau tại điểm H; tia BF và CE cắt nhau tại A. Đường thẳng AH cắt đường thẳng BC tại D. Chứng minh 2. Cho đường tròn (O) và một điểm A nằm ngoài đường tròn. Kẻ hai tiếp tuyến AB và AC với đường tròn (O) . Trên đoạn OB lấy điểm (I khác B, I khác O). Đường thẳng AI cắt đường tròn (O) tại điểm D và E( D nằm giữa A và E). Chứng minh =AD.AE
Trên đường tròn (O) dựng dây BC không đi qua tâm. Trên tia đối của tia BC. Lấy điểm M. Đường thẳng đi qua M cắt đường tròn (O) lần lượt tại N và P, sao cho O nằm trong góc PMC. Trên cung nhỏ NP lấy điểm A sao cho cung AN bằng cung AP. Nối AB và AC lần lượt cắt NP ở D và E. Chứng minh rằng:
a) Góc ADE= Góc ACB.
b) Tứ giác BDEC nội tiếp.
c) MB.MC=MN.NP.
d) Nối OK cắt NP tại K. Chứng minh MK2>MB.MC
giải chi tiết giúp mk vs! mk đang cần gấp
Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Vẽ đường kính AD, tiếp tuyến với đường tròn (O;R) tại D cắt BC tại E. Vẽ OK vuông góc với BC.(K nằm trên đường thẳng BC)
1) cm 4 điểm O,K,D,E cùng thuộc 1đường tròn
2) gọi H là điểm đối đối xứng với D qua K . cmr tứ giác BDCH là hình bình hành và H LÀ TRỰC TÂM CỦA TAM GIÁC ABC
3) gọi G là trọng tâm tam giác ABC , cmr 3 điểm H,G,O thẳng hàng
Từ A nằm ngoài (O). Kẻ 2 tia tiếp tuyến AB,AC. BC cắt OA tại E. K trên cung nhỏ BC. Tiếp tuyến tại KC cắt AB tại P và Q. 1 đường thẳng vuông góc với OA tại O cắt AB, AC tại M và N.
a) Chứng minh: tứ giác ABOC nội tiếp
b) Chứng minh: OE. OA = R2
c) Chu vi △ APQ không đổi khi K di chuyển
d) Chứng minh: PM + PQ ≥ MN
Cho đường tròn đường kính BC cố định. Trên tia đối của BC lấy điểm A (khác B). Kẻ tiếp tuyến AM với đường tròn tâm (O), M là tiếp điểm. Qua A kẻ đường thẳng d vuông góc với AC, tia CM cắt d tại D.
a) Chứng minh tứ ADMB là tứ giác nội tiếp
b) Kẻ tia Mx sao cho MB là phân giác của góc AMx. Chứng minh AB.AC=AH.AO
Cho nửa đường tròn (O;R),đường kính AB. Gọi C là điểm chính giữa của cung AB. Trên đoạn OC lấy điểm E (E khác O,C). Tia AE cắt đường tròn (O) tại M. Tiếp tuyến tại M của đường tròn (O) cắt OC ở D. Gọi K là giao điểm của BM và OC
a) Chứng minh tứ giác OBME nội tiếp 1 đường tròn.
b) Chứng minh tam giác MDE cân và BM.BK không phụ thuộc vào vị trí của điểm E.
c)Tìm vị trí của điểm E để MB=1/2MA
Cho tam giác ABC có ba góc nhọn(AB<AC; AB <BC) nội tiếp đường tròn (O; R). Hai đường cao AD và BE cắt nhau tại H, CH cắt AB tại F. Tia EF cắt tia CB tại S.
1. Chứng minh: Tứ giác BFEC nội tiếp, xác định tâm I của đường tròn này.
2. Chứng minh: FC là tia phân giác góc EFD và AF.AB =AE.AC
3. Tia EF cắt tia CB tại S. Tiếp tuyến tại B của đường tròn (I) cắt FC và AS lần lượt tại P và M. Chứng minh:ME là tiếp tuyến của (I).
4. Đường thẳng qua D song song với BE cắt BM tịa N. Đường tròn ngoại tiếp tam giác MNE cắt BE tại điểm thứ hai là K. Đường thẳng qua B song song với AC cắt DF tại Q. Chứng minh: OK vuông góc với PQ