Ta có MA, MB là hai tiếp tuyến tại A và B nên \(MA \bot OA\) và \(MB \bot OB\)
Xét tam giác MAO vuông tại A, ta có:
\({\rm{cos}}\widehat {MOA} = \frac{{AO}}{{MO}} = \frac{5}{{10}} = \frac{1}{2}\)
Suy ra \(\widehat {MOA}\)= 60o
Vì MA và MN là hai tiếp tuyến cắt nhau tại M nên OM là tia phân giác của góc AOB.
Suy ra \(\widehat {AOB} = 2\widehat {MOA} = 2.{60^o} = {120^o}\)
Đúng 0
Bình luận (0)