Bài 2. Tiếp tuyến của đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Quốc Đạt

Cho đường tròn (O; 5 cm) , điểm M nằm ngoài (O) sao cho hai tiếp tuyến MA và MB (A; B là hai tiếp điểm) vuông góc với nhau tại M.

a) Tính độ dài MA và MB.

b) Qua giao điểm I của đoạn thẳng MO và đường tròn (O), vẽ một tiếp tuyến cắt OA, OB lần lượt tại C, D. Tính độ dài CD.

Nguyễn Quốc Đạt
25 tháng 10 2024 lúc 23:21

a) Xét tứ giác AOBM có:

\(\widehat {MAO} = {90^o}\) (Vì AM là tiếp tuyến của (O))

\(\widehat {OBM} = {90^o}\)(Vì BM là tiếp tuyến của (O))

\(\widehat {AMB} = {90^o}\) (Vì \(AM \bot MB\) tại M).

Do đó, tứ giác AOBM là hình chữ nhật.

Mà OA = OB (= R của (O))

Nên tứ giác AOBM là hình vuông.

Nên ta có MA = MB = OA = 5 cm.

b) Vì AM và MB là hai tiếp tuyến của (O) cắt nhau tại M nên OM là phân giác của

\(\widehat {AOB}\).

Ta có: \(\widehat {AOM} = \frac{1}{2}.\widehat {AOB} = \frac{1}{2}{.90^o} = {45^o}\)

Xét tam giác OCD có OI là đường cao (vì CI là tiếp tuyến của đường trồn tâm O) và OI là đường phân giác .

Do đó: tam giác OCD cân tại O.

Suy ra OI cũng là đường trung tuyến.

Xét tam giác CIO vuông tại I có CI = OI.tan \(\widehat {COI}\) = 5 .tan 45o = 5 cm.

Mà I là trung điểm của CD (Vì OI là trung tuyến tam giác COD).

Do đó CD = 2CI = 2.5 = 10 cm.