Bài 8: Đường tròn nội tiếp. Đường tròn ngoại tiếp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Xích U Lan

Cho đường tròn (O), 1 điểm nằm bên ngoài đường tròn. Vẽ tiếp tuyến MB và MC với (O), MO cắt BC ở I và cắt đường tròn ở K. C/m:

a, Tứ giác MBDC nội tiếp

b, BK là phân giác của \(\widehat{MBC}\)

c, \(\dfrac{KI}{KM}=\dfrac{BI}{BM}\)

d, K là tâm đường tròn nội tiếp ΔMBC

tthnew
26 tháng 3 2021 lúc 18:35

Mình đoán M là một điểm nằm ngoài đường tròn và câu a là chứng minh MBOC nội tiếp. Lần sau viết đề kỹ hơn bạn nha.

\(KB=KC\Rightarrow \angle KBC=\angle KCB=\text{sđc} BC=\angle MBK.\)

Vậy BK là tia phân giác $\angle MBC.$

c) Theo câu b ta có BK là tia phân giác $\angle MBC.$ Theo tính chất đường phân giác \(\dfrac{KI}{KM}=\dfrac{BI}{BM}\)

d) Hạ KX vuông góc với BM. Do câu b nên ta có ^IBK=^XBK; BK chung vậy $\Delta IBK=\Delta IXB \Rightarrow KI=KX.$ (1)

Hạ KY vuông góc với CM. Tương tự câu b ta chứng minh được CK là phân giác ICY.

Tương tự cách chứng minh ở (1) ta cũng có KI=KY. (2)

Từ (1) và (2) KI=KX=KY tức K cách đều ba cạnh của tam giác. Vậy K là tâm nội tiếp $\Delta MBC.$ 

tthnew
26 tháng 3 2021 lúc 18:15

D nằm ở đâu? M nằm ở đâu?


Các câu hỏi tương tự
Trần Công Luận
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Đặng Thuỷ
Xem chi tiết
thuy thanh
Xem chi tiết
Hạ Mặc Tịch
Xem chi tiết
Võ Quang Nhật
Xem chi tiết
Minh Thư.
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
son nguyen van
Xem chi tiết