Chương II - Đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Nhật

Cho đường tròn đường kính AB vẽ các tiếp tuyến Ax : By từ M trên đường tròn (M khác A,B) vẽ tiếp tuyến thứ 3 nó cắt Ax ở C cắt By ở D gọi N là giao điểm của BC và AD .chứng minh rằng câu a CN/AC =NB/BD câu B MN vuông góc với AB câu C góc COD =90  

Nguyễn Lê Phước Thịnh
28 tháng 12 2020 lúc 11:33

Gọi tâm của đường tròn đó là O

a) Xét (O) có

AC là tiếp tuyến có A là tiếp điểm(gt)

nên AC⊥AB tại A(Định lí vị trí tương đối của đường thẳng với đường tròn)

Xét (O) 

BD là tiếp tuyến có B là tiếp điểm(gt)

nên BD⊥AB tại B(Định lí vị trí tương đối của đường thẳng với đường tròn)

Ta có: AC⊥AB(cmt)

BD⊥AB(cmt)

Do đó: AC//BD(Định lí 1 từ vuông góc tới song song)

\(\widehat{CAN}=\widehat{BDN}\)(hai góc so le trong)

Xét ΔCAN và ΔBDN có 

\(\widehat{CAN}=\widehat{BDN}\)(cmt)

\(\widehat{CNA}=\widehat{BND}\)(hai góc đối đỉnh)

Do đó: ΔCAN∼ΔBDN(g-g)

\(\dfrac{CN}{BN}=\dfrac{CA}{BD}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{CN}{CA}=\dfrac{BN}{BD}\)(đpcm)

c) Xét (O) có 

DB là tiếp tuyến có B là tiếp điểm(gt)

DM là tiếp tuyến có M là tiếp điểm(gt)

Do đó: DO là tia phân giác của \(\widehat{MDB}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\widehat{MDB}=2\cdot\widehat{ODM}\)

Xét (O) có 

CM là tiếp tuyến có M là tiếp điểm(gt)

CA là tiếp tuyến có A là tiếp điểm(gt)

Do đó: CO là tia phân giác của \(\widehat{ACM}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\widehat{ACM}=2\cdot\widehat{OCM}\)

Ta có: AC//BD(cmt)

nên \(\widehat{ACM}+\widehat{BDM}=180^0\)(hai góc trong cùng phía bù nhau)

hay \(2\cdot\widehat{OCM}+2\cdot\widehat{ODM}=180^0\)

\(\Leftrightarrow2\cdot\left(\widehat{OCM}+\widehat{ODM}\right)=180^0\)

hay \(\widehat{OCD}+\widehat{ODC}=90^0\)

Xét ΔOCD có \(\widehat{OCD}+\widehat{ODC}=90^0\)(cmt)

nên ΔCOD vuông tại O(Định lí tam giác vuông)

\(\widehat{COD}=90^0\)(đpcm)


Các câu hỏi tương tự
HuyHoang
Xem chi tiết
Le Dong
Xem chi tiết
Phương
Xem chi tiết
Vũ Kỳ Anh
Xem chi tiết
Trần Chúc Hoài
Xem chi tiết
Lê Yến Nhi
Xem chi tiết
jasu
Xem chi tiết
Đỗ Thanh Tùng
Xem chi tiết
Thanh Xuân
Xem chi tiết