Bài 6: Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Ích Bách

Cho đường thẳng phương trình: \(m\sqrt{3}x+\left(2m-2\right)y-\left(m+2\right)=0\left(d\right)\)

Chứng minh rằng với mọi m thì đường thẳng (d) luôn đi qua một điểm cố định.

Vũ Thị Chi
7 tháng 10 2018 lúc 21:39

TH1: m = 0 => -2y = 2 => y = -1

Nên (d) đi qua điểm (0; -1) cố định

TH2: m # 0

Giả sử A(xo;yo) là điểm mà (d) luôn đi qua

\(\Leftrightarrow m\sqrt{3}x_0+2my_0-2y_0-m-2=0\\ \Leftrightarrow m\left(\sqrt{3}x_0+2y_0-1\right)-2y_0-2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{3}x_0+2y_0-1=0\\2y_0+2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y_0=-1\\x=\sqrt{3}\end{matrix}\right.\)

Nên (d) đi qua điểm A(√3; -1) cố định

Vậy với mọi m, đường thẳng (d) luôn đi qua 1 điểm cố định