bài1 : cho △1: x+y-1=0 và△2:x-3y+3=0. Viết phương trình đường thẳng d đối xứng với đường thẳng△1qua đường thẳng △2
bài2:
cho đường thẳng △:2x-y+3=0 viết phương trình đường thẳng △':
a, đối xứng với △ qua Ox
b,đối xứng với △ qua Oy
c, đối xứng với △ qua gốc tọa độ O
Lập phương trình đường thẳng (d1) đối xứng với đường thẳng (d) qua I :
a. I (-3;1) (d): 2x+3y-3=0
trong mặt phẳng xOy cho 2 điểm A<2,3>, B<1 ,-2> và đường thẳng d x-3y +1 bằng 0
a, viết phương trình tham số của đường thẳng P1 đi qua A và nhận u <1,-5> làm vecto chỉ phương
b, viết phương trình tổng quát của đường thẳng P2 đi qua B và vuông góc với đường thẳng d
c, tính khoảng cách từ gốc O đến đường thẳng AB
trong mặt phẳng xOy cho 2 điểm A<2,3>, B<1 ,-2> và đường thẳng d x-3y +1 bằng 0
a, viết phương trình tham số của đường thẳng Δ1 đi qua A và nhận u <1,-5> làm vecto chỉ phương
b, viết phương trình tổng quát của đường thẳng Δ2 đi qua B và vuông góc với đường thẳng d
c, tính khoảng cách từ gốc O đến đường thẳng AB
trong mặt phẳng xOy cho 2 điểm A<2,3>, B<1 ,-2> và đường thẳng d x-3y +1 bằng 0
a, viết phương trình tham số của đường thẳng P1 đi qua A và nhận u <1,-5> làm vecto chỉ phương
b, viết phương trình tổng quát của đường thẳng P2 đi qua B và vuông góc với đường thẳng d
c, tính khoảng cách từ gốc O đến đường thẳng AB
Lập phương trình đường thẳng d' đối xứng với đường thẳng d qua đường thẳng \(\Delta\) với : d: 2x-y+1=0 và \(\Delta\): 3x-4y+2=0
Lập phương trình đường thẳng (d) đối xứng với đường thẳng (d) quan đường thẳng (\(\Delta\)) biết:
a, (d): x + 2y -1 = 0; (\(\Delta\)): 2x - y + 3=0
b, (d): 2x + 3y + 5 = 0; (\(\Delta\)) 5x - y + 4 = 0
Lập phương trình đường thẳn (d1) đối xứng với đường thẳng (d) qua đường thẳng (■) biết :
(d): x+2y-1=0 ; (■): 3x-y+3=0
Cho đường thẳng \(d:2x+3y+4=0\) và điểm \(M\left(2;1\right)\). Viết phương trình đường thẳng đi qua M và :
a. Song song với d
b. vuông góc với d
c.tạo với d một góc \(45^0\)
d. tạo với d 1 góc \(\alpha\) mà \(\cos\alpha=\frac{2}{\sqrt{13}}\)