Ôn tập Đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đinh Quỳnh Anh

Cho đtr (O; R) và 1 điểm A nằm cách O 1 khoảng bằng 2R. Từ A vẽ các tt AB, AC với
đtr (B, C là các tiếp điểm). đg thg vuông góc với OB tại O cắt AC tại N, đg thg vuông góc với
OC tại O cắt AB tại M
a) CMR: AMON là hình thoi
b) Đthg MN là tt của đtr (O)
c) Tính diện tích hình thoi AMON

 

Nguyễn Lê Phước Thịnh
24 tháng 12 2023 lúc 11:07

a: ta có: ON\(\perp\)OB

AB\(\perp\)OB

Do đó: ON//AB

=>ON//AM

Ta có: OM\(\perp\)OC

AC\(\perp\)OC

Do đó: OM//AC

=>OM//AN

Xét tứ giác OMAN có

OM//AN

ON//AM

Do đó: OMAN là hình bình hành

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AO là phân giác của góc BAC

=>AO là phân giác của góc MAN

Hình bình hành OMAN có AO là phân giác của góc MAN

nên OMAN là hình thoi

b: Kẻ OH\(\perp\)MN tại H

Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BAO}=30^0\)

Ta có: ΔBOA vuông tại B

=>\(\widehat{BOA}+\widehat{BAO}=90^0\)

=>\(\widehat{BOA}=60^0\)

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: OA là phân giác của góc BOC

=>\(\widehat{BOC}=2\cdot\widehat{BOA}=120^0\)

Ta có: \(\widehat{BOM}+\widehat{COM}=\widehat{BOC}\)

=>\(\widehat{BOM}=120^0-90^0=30^0\)

Xét ΔMOA có MO=MA

nên ΔMOA cân tại M

=>\(\widehat{MOA}=\widehat{MAO}=30^0\)

Xét ΔOBM vuông tại B và ΔOHM vuông tại H có

OM chung

\(\widehat{BOM}=\widehat{HOM}\left(=30^0\right)\)

Do đó: ΔOBM=ΔOHM

=>OB=OH=R

Xét (O) có

OH là bán kính

MN\(\perp\)OH tại H

Do đó: MN là tiếp tuyến của (O)

 

 


Các câu hỏi tương tự
Trần Ngọc Uyển Vy
Xem chi tiết
Lê Vinh
Xem chi tiết
Ngọc Hà
Xem chi tiết
Hà Việt Hùng
Xem chi tiết
Thị Yến Phạm
Xem chi tiết
nguyễn anh quốc
Xem chi tiết
Nguyễn Gia Huy
Xem chi tiết
Chi Le
Xem chi tiết
Ngocny
Xem chi tiết