a, - Xét \(\Delta BNA\) và \(\Delta BAM\) có :
\(\left\{{}\begin{matrix}\widehat{BAM}\left(chung\right)\\\widehat{BNA}=\widehat{BAM}\left(=90^o\right)\end{matrix}\right.\)
=> \(\Delta BNA\) ~ \(\Delta BAM\) ( g - g )
=> \(\frac{AB}{BN}=\frac{BM}{AB}\)
=> \(AB^2=BM.BN\) ( đpcm )
b,
Ta có : \(\widehat{EFA}=\widehat{EAB}\left(+\widehat{FBA}=90^o\right)\)
Mà \(\left\{{}\begin{matrix}\widehat{AFB}+\widehat{BFM}=180^o\left(I\right)\\\widehat{EAB}+\widehat{ENB=180^o\left(II\right)}\\\widehat{MNE}+\widehat{NEB}=180^o\left(III\right)\end{matrix}\right.\)
( Chú thích ( I ) : A, F, M thẳng hàng ( II ) : tứ giác AENB nội tiếp ( III ) : M, N, B thẳng hàng )
=> \(\widehat{MFE}=\widehat{ENB}\)
Lại có : \(\widehat{MNE}=\widehat{EAB}\left(+\widehat{ENB}=180^o\right)\)
=> \(\widehat{MFE}+\widehat{MNE}=\widehat{ENB}+\widehat{EAB}=180^o\)
=> Tứ giác MNEF nội tiếp .