lũy thừa của a,x,y,z đều chẵn nên tổng sẽ dương với mọi x,y,z
x = 0 hoặc y = 0 hoặc z = 0 thì cả tích bằng 0
lũy thừa của a,x,y,z đều chẵn nên tổng sẽ dương với mọi x,y,z
x = 0 hoặc y = 0 hoặc z = 0 thì cả tích bằng 0
Cho đơn thức \(A=3\left(a^2+\dfrac{1}{a^2}\right)x^2y^4z^6\) với A là hằng số khác 0
a) Chứng minh đơn thức A luôn luôn không âm với mọi biến x, y, z
b) Với giá trị nào của x, y, z thì A = 0
Cho đơn thức \(A=3.\left(a^2+\dfrac{1}{a^2}\right).x^2.y^4.z^{6^{ }}\)với a là hằng số, \(a\ne0\)
a, CMR: \(A\ge0\) với mọi x,y thuộc R
b, Với giá trị nào của x, y, z thì A=0
Cho 3 số hữu tỉ x, y, z thỏa mãn với xyz(3x + y + z)(3y + z + x)(3z + x + y) \(\neq\) 0 thỏa mãn điều kiện \(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}\). Tính giá trị biểu thức:
A = \(\left(2+\dfrac{y+z}{x}\right)\left(2+\dfrac{z+x}{y}\right)\left(2+\dfrac{x+y}{z}\right)\)
1, Tính tổng S= \(\dfrac{1}{2}+\dfrac{3}{4}+\dfrac{7}{8}+\dfrac{15}{16}+\dfrac{31}{32}+\dfrac{63}{64}+\dfrac{127}{128}-6\)
2, Tìm x,y,z biết:
a) \(\dfrac{x}{8}=\dfrac{y}{3}=\dfrac{z}{10}\)và xy+yz+zx=1206
b) \(\dfrac{x}{4}=\dfrac{2y}{5}=\dfrac{5z}{6}\)và x2 - 3y2 + 2z2 = 325
3, Cho biểu thức M= \(\dfrac{5x+2y+z}{x+4y-3z}\)trong đó x,y,z tỉ lệ với các số 2,3,4. Tính giá trị của M.
4, Cho số a= \(\left(\dfrac{56}{55}-1,01\right)^{50}\).Chứng minh rằng nếu viết số a dưới dạng số thập phân thì số a sẽ có ít nhất là 99 chữ số 0 đầu tiên sau dấu phẩy.
5, Tìm các giá trị của x và y để:
a) Biểu thức A= \(\left(x-\dfrac{5}{6}\right)^2+\left(xy-\dfrac{1}{4}\right)^4-85\) đạt giá trị nhỏ nhất.
b) Biểu thức B= -5(3x+2)4 + [-(x+2y)2]5 +111 đạt giá trị lớn nhất.
Mong các bn giúp mình, cám ơn nhìu...!
1.Tính:
\(a,A=\sqrt{12\frac{1}{4}}.\left(\frac{-2}{7}\right)^2-\left[2,\left(4\right).2\frac{5}{11}\right]:\left(\frac{-42}{5}\right)\)
\(B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{2016}{3^{2016}}\)
2. Tìm x,y,z biết:
a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)
b) \(\sqrt{\left(x+\sqrt{5}\right)^2}+\sqrt{\left(y+\sqrt{3}\right)^2}+\left|x-y-z\right|=0\)
c) \(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}\) và x-2y+3z=14.
d) \(5^x+5^{x+1}+5^{x+2}=3875\).
3. a) Cho bốn số a,b,c,d>0 thỏa mãn: \(\frac{1}{c}=\frac{ }{1}2.\left(\frac{1}{b}+\frac{1}{a}\right)\)và b là trung bình cộng của a và c. Chứng minh rằng bốn số đó lập nên một tỉ lệ thức.
b) Cho tỉ lệ thức: \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\) (với a,b,c,d khác 0)
Chứng minh rằng: \(\frac{a}{b}=\frac{c}{d}\)
Bài 1: Cho \(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\) và \(2x^3-1=15\)
Tính A= x + y + z
Bài 2: a) Tìm x, y biết: \(x\left(x-y\right)=\dfrac{3}{10}\) và \(y\left(x-y\right)=-\dfrac{3}{50}\)
b) Tìm x biết: \(\left(x-3\right)\left(x+\dfrac{1}{2}\right)>0\)
Bài 3: a) Tìm số tự nhiên n để phân số \(\dfrac{7n-8}{2n-3}\) có giá trị lớn nhất.
b) Cho đa thức P(x)= \(ax^3+bx^2+cx+d\) với a, b, c, d là cáca hệ số nguyên. Biết rằng, P(x) chia hết cho 5 với mọi x nguyên. chứng minh a,b,c,d đều chia hết cho 5
c) Gọi a,b,c là độ dài các cạnh của tam giác. CMR: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\)
Bai 1:Cho các số hữu tỉ \(x=\dfrac{a}{b};y=\dfrac{c}{d};z=\dfrac{a+c}{b+d}\left(a,b,c,d\in Z;b,d>0\right)\)
Chứng minh rằng nếu x<y thì x<z<y
Bài 2:Cho x=\(\dfrac{12}{b-15};b\in Z\).Xách định b để:
a)x là một số hữu tỉ
b) x là số hữu tỉ dương
c) x là số hữu tỉ âm
Bai 3:Cho A=\(\left|x-\dfrac{1}{3}\right|+\dfrac{1}{4}\).Hãy so sánh A với \(\dfrac{1}{5}\)
Bài 4:Tìm các giá trị của x để cho biểu thức sau có giá trị dương
M=(x+5).(x+9)
Bài 5:Chứng ming rằng không tồn tại hai số hữu tỉ x và y trái dấu ,không đối nhau thỏa mãn đẳng thức:
\(\dfrac{1}{x+y}=\dfrac{1}{x}+\dfrac{1}{y}\)
Help me
Cho x,y,z khác o và x-y-z=0.
Tính giá trị biểu thức: \(A=\left(1-\frac{z}{x}\right).\left(1-\frac{x}{y}\right).\left(1+\frac{y}{z}\right)\)
Cho số hữu tỉ x=\(\dfrac{a+11}{a},\text{∈ Z , a ≠ 0}.\) Với giá trị nguyên nào của a thì x là một số nguyên?