Cho điểm C nằm giữa hai điểm A và B, i là trung điểm của đoạn thẳng BC. Tính độ dài của đoạn AB biết răng AC = 5cm và Ci = 7cm
giúp mình, ghi cách trình bay ra nha! cần gấp!
Cho tam giác AB cân tại A nội tiếp đường tròn tâm O. Gọi M;N là hai điểm lần lượt thuộc các đường thẳng AB và AC sao cho MN=AB=AC. Gọi P là giao điểm của MN và (O), Q là 1 điểm thuộc AP sao cho QM+QN=AP. Chứng minh rằng 4 điểm A;M;Q;N cùng thuộc một đường tròn.
Trên đường tròn (O;R) cho dây AB có độ dài bằng \(R\sqrt{3}\). Gọi K là điểm chính giữa cung nhỏ AB và I là giao điểm của OK với dây cung AB. Cho điểm E di động trên đoạn thẳng BI (E khác B và I) và gọi F là giao điểm thứ hai của KE với đường tròn tâm O. Qua điểm B kẻ đường thẳng vuông góc với KE tại điểm H và cắt AF tại điểm M. Nếu E di động trên dây cung AB để có BF=R. Tìm vị trí của điểm M đối với đường tròn tâm O
Cho đường tròn (O) đường kính AC, điểm B nằm giữa hai điểm O và C. Vẽ đường tròn tâm O’ đường kính BC. Gọi M là trung điểm của đoạn thẳng AB. Từ M vẽ dây cung DE của đường tròn (O) vuông góc với AB; DC cắt đường tròn tâm O’ tại I. Chứng minh:
1. Tứ giác ADBE là hình thoi.
2. Tứ giác DMBI nội tiếp đường tròn (4 điểm D, M, B, I nằm trên cùng một đường tròn).
3. MC.DB = MI.DC.
4. MI là tiếp tuyến của đường tròn (O’).
Cho đường tròn (O) đường kính AC, điểm B nằm giữa hai điểm O và C. Vẽ đường tròn tâm O’ đường kính BC. Gọi M là trung điểm của đoạn thẳng AB. Từ M vẽ dây cung DE của đường tròn (O) vuông góc với AB; DC cắt đường tròn tâm O’ tại I. Chứng minh:
1. Tứ giác ADBE là hình thoi.
2. Tứ giác DMBI nội tiếp đường tròn (4 điểm D, M, B, I nằm trên cùng một đường tròn).
3. MC.DB = MI.DC.
4. MI là tiếp tuyến của đường tròn (O’).
Giúp mình với mốt là mình đi thi rồi
Cho (O,R) trên (O,R) lấy hai điểm A và H sao cho AH<R. Gọi a là tiếp tuyến tại H của (O) . Trên a lấy hai điểm B và C sao cho H nằm giữa B,C và AB=AC=R Từ H lần lượt vẽ HM vuông góc với OB (M thuộc OB ) và HN vuông góc OC (N thuộc OC )
1) CM rằng MN là trung trực OA
2) Chứng minh OB.OC=2R2
3) Tìm giá trị lớn lớn nhất của diện tích tam giác OMN khi H thay đổi
( Hướng dẫn : Gọi S là điểm thuộc cung nhỏ HI. Kẻ tiếp tuyến tại S của (O) cắt BH, BI lần lượt tại R và T )
Cho đường tròn (0,r) và điểm M nằm ngoài đường tròn . Vẽ 2 tiếp tuyến MA , MB của đường tròn ( AB là tiếp điểm )a, Chứng minh rằng 4 điểm O,A,M,B nằm trên 1 đường trònb, Biết OA = 6 cm , AM = 8cm . Tính số đo góc AMO và độ dài đoạn thẳng ABc, Gọi giao điểm của OM và (O;r) là K . Từ K kẻ KP⊥AM (P∈AM ) ; kẻ KQ ⊥BM ( Q∈BM ) . Chứng minh rằng PQ // AB
cho đường tròn (O) và điểm A nằm ngoài đường tròn. vẽ tiếp tuyến AM,AN với đường tròn O (M,N thuộc O). qua A vẽ một đường thẳng cắt đường tròn O tại hai điểm B,C phân biệt (B nằm giữa A và C). gọi H là trung điểm của đoạn BC
a.cm tứ giác AMHN nội tiếp đường tròn
b.cm AN\(^2\)=AB.AC
cho đường tròn (O) và 1 điểm A nằm ngoài đường tròn (O).Kẻ tiếp tuyến AB đường kính BC.Trên đoạn OC lấy điểm D .đường thảng AD cắt (O) tại E,F (E nằm giữa A và F).Gọi I là trung điểm của EF
a) ABOI nt
b) đường thẳng F song song với AO cắt BC tại K.Chứng minh B,I,K,F cx thuộc 1
đường tròn
Mong nhận được sự trợ giúp của các cao nhân !!!