Cho tam giác ABC vuông tại A (Ab > AC), đường cao AH(H thuộc BC), Trên tia đối của tia CB lấy điểm M sao cho HM=HA. Qua điểm M kẻ đường thẳng vuông góc với MB cắt đường thẳng AB tại N. Gọi P là trung điêmr của CN. Tia AP cắt đường thẳng BC tại Q. Chứng minh: a) Tam giác NCB đồng dạng tam giác MAB
Cho tam giác ABC vuông tại A có đường cao AH, biết AB=15, AC= 20cm.
a) Tính BC, AH.
b) Trên đonạ HC lấy D sao cho HD=HB. Tính tan góc ADH và chứng minh: HD.HC=HA^2
c) Trên tia AH lấy điểm E sao cho H là trung điểm của AE. Đường thẳng ED cắt AC tại F. Gọi O là trung điểm của CD. Chứng minh HF vuông góc FO.
d) Đoạn HF cắt AD tại S. Tia CS cắt AH tại K và cắt AB tại M. Chứng minh: AB/AM +AD/AS = AE/AK
Cho tam giác vuông ABC vuông tại A, đường cao AH, Biết AC=12cm, BC=15cm.
a. Tính độ dài AB,AH,BH,HC
b. M là 1 diểm chuyển động trên BC, vẽ MD⊥AB, ME ⊥ AC (D ∈ AB, E ∈ AC). Xác định vị trí của điểm M để DE có độ dài nhỏ nhất.
(Giải giúp em câu b thôi ạ, ^^)
Cho tam giác ABC vuông tại A có góc B = 60 độ, BC = 6cm.
a) Tính AB, AC (độ dài làm tròn đến 1 chữ số thập phân).
b) Kẻ đường cao AH của tam giác ABC. Tính HB, HC.
c) Trên tia đối của tia BA lây điểm D sao cho DB = BC. Chứng minh: \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)
d) Từ A kẻ đường thẳng song song với phân giác của CBD cắt CD tại K. Chứng minh : \(\dfrac{1}{KD.KC}=\dfrac{1}{AC^2}+\dfrac{1}{AD^2}\)
Cho tam giác ABC vuông tại A có BC = 10cm , góc C = 30° .
a)Giải ΔABC
b)Vẽ đường cao AH(H thuộc BC).Kẻ tia Hx vuông tại AC và tia Ay//BC.Gọi D là giao điểm của Hx và Ay.CM: AH2=AD.HC
Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Lấy điểm D trên cạnh AC và E trên tia AH và ngoài đoạn thẳng AH sao cho AD/AC = HE/HA = 1/3 . Chứng minh rằng tam giác BED là tam giác vuông.
Cho Tam giác ABC vuông tại A có AB=9 cm, BC=15, đường cao AH
a) Tính AH, CH
b) qua B vẽ đường thẳng vuông góc với BC cắt AC tại D. Tia phân giác của C cắt AB tại N và BD tại M. Chứng minh CN.CD=CM.CB
c) Chứng minh NA.CD=MD.CA
Cho hình vuông ABCD. Gọi E là một điểm nằm trên cạnh BC. Qua E kẻ tia Ax vuông góc với AE, tia Ax cắt CD tại F. Trung tuyến AI của tam giác AEF cắt CD ở K. Đường thẳng qua E song song với AB cắt AI ở G.
Mọi người vẽ hình dùm nha!!!!
Cho đường trong tâm O, bán kính R và đường thẳng d cố định không cắt đường tròn. Từ 1 điểm A bất kì trên đường thẳng d, kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm). Từ B kẻ đường thẳng vuông góc với AO tại H, trên tia đối của tia HB lấy điểm C sao cho HC = HB
a, CM: C thuộc đường thẳng O bán kính R và AC là tiếp tuyến của đường thẳng O bán kính R
b, Từ O kẻ đường thẳng vuông góc với đường thẳng d tại I, OI cắt BC tại K. CM: OH.OA = OI.OK=R2