Trong mặt phẳng Oxy cho: M(2;1/3) và (d): x + y -7=0
a) Tìm tọa độ M' là ảnh của M qua phép đối xứng trục d
b) Tìm pt đường thẳng (d') là ảnh của (d) qua phép đối xứng tâm M
Trong mặt phẳng Oxy, cho hai điểm I(1; 2), M(-2; 3), đường thẳng d có phương trình \(3x-y+9=0\) và hai đường tròn (C) có phương trình :
\(x^2+y^2+2x-6y+6=0\)
Hãy xác định tọa độ của điểm M', phương trình của đường thẳng d' và đường tròn (C') theo thứ tự là ảnh của M, d và (C) qua :
a) Phép đối xứng qua gốc tọa độ
b) Phép đối xứng qua tâm I
Trong mặt phẳng tọa độ Oxy cho điểm \(A\left(-1;3\right)\) và đường thẳng d có phương trình \(x-2y+3=0\). Tìm ảnh của A và d qua phép đối xứng tâm O ?
trong mặt phẳng tọa độ Oxy , cho đường thẳng (d) : ax + by + c = 0 và điểm I(x0 ; y0) . Phép đối xứng tâm ĐI biến đường thẳng (d) thành đường thẳng (d') . Viết phương trình của (d')
Trong mặt phẳng Oxy cho đường thẳng Δ : y + 2 = 0 và đường tròn (C) : x2 + y2 = 13. qua phép đối xứng tâm I ( 0;1) điểm M trên đường thẳng Δ biến thành điểm M thuộc (C). Độ dài nhỏ nhát của đoạn MN bằng bào nhiêu?
trong mặt phẳng tọa độ Oxy , cho đường thẳng (\(\Delta\)) : ax + by + c = 0 và điểm I(x0 ; y0) . Phép đối xứng tâm ĐI biến đường thẳng \(\Delta\) thành đường thẳng \(\Delta\)' . Viết phương trình của \(\Delta\)'
qua phép đối xứng trục Đa (a là trục đối xứng) , đường thẳng d biến thành đường thẳng d' . Hãy trả lời các câu hỏi sau :
a) khi nào thì d song song với d' ?
b) khi nào thì d trùng với d' ?
c) khi nào thì d cắt d' ? giao điểm của d và d' có tính chất gì ?
d) khi nào thì d vuông góc với d' ?
Trong mặt phẳng Oxy cho đường thẳng Δ : y + 2 = 0 và đường tròn (C) : x2 + y2 = 13. qua phép đối xứng tâm I ( 0;1) điểm M trên đường thẳng Δ biến thành điểm M thuộc (C). Độ dài nhỏ nhát của đoạn MN bằng bào nhiêu?
Trong mặt phẳng Oxy, cho đường thẳng d có phương trình \(x-2y+2=0\) và d' có phương trình \(x-2y-8=0\). Tìm phép đối xứng tâm biến d thành d' và biến trục Ox thành chính nó ?