Từ một điểm \(A\) ở ngoài đường tròn \(\left(O\right)\), kẻ hai tiếp tuyến \(AB,AC\) với đường tròn tâm \(O\) (\(B,C\) là các tiếp điểm).
a) Chứng minh bốn điểm \(A,B,O,C\) cùng thuộc một đường tròn.
b) Vẽ cát tuyến \(ADE\) (\(D\) nằm giữa \(A,E\)) sao cho điểm \(O\) nằm trong góc \(EAB\). Gọi \(I\) là trung điểm của \(ED\). \(BC\) cắt \(OA,EA\) theo thứ tự tại \(H,K\). Chứng minh \(OA\perp BC\) tại \(H\) và \(AH\cdot AO=AK\cdot AI\).
c) Tia \(AO\) cắt \(\left(O\right)\) tại hai điểm \(M,N\) (\(M\) nằm giữa \(A,N\)). Gọi \(P\) là trung điểm của \(HN\), đường vuông góc với \(BP\) vẽ từ \(H\) cắt tia \(BM\) tại \(S\). Chứng minh \(MB=MS\).
Từ điểm A ngoài đường tròn vẽ tiếp tuyến AB, AC (B,C là tiếp điểm) và cát tuyến ADE (D nằm giữa A,E) sao cho O nằm trong góc EAB. Gọi I là trung điểm ED
a) Chứng minh OI vuông với ED và 5 điểm I, B, C, A, O, cùng thuộc một đường tròn.
b) BC cắt OA, EA lần lượt tại H và K. Chứng minh: OA vuông với BC và AB bình = AK.AI
c) Vẽ đường kính BQ và F là trung điểm AH. Chứng minh: góc BFO = góc CHQ
Cho (O) và 1 điểm A nằm ngoài đường tròn. Từ A kẻ 2 tiếp tuyến AB, AC (B và C là 2 tiếp điểm). Từ A kẻ thêm các tuyến AMN đi qua (O) và nằm trong góc BAO. Chúng minh AB.AB=AM.AN
ừ điểm A nằm ngoài đường tròn (O), kẻ 2 tiếp tuyến AB, AC đến đường tròn (O)
(B, C là 2 tiếp điểm).
a) Chứng minh: Bốn điểm O, B, A, C cùng thuộc 1 đường tròn và BC OA tại H.
b) Kẻ đường kính BD của đường tròn (O). Qua C vẽ đường thẳng vuông góc với AB,
đường thẳng này cắt OA tại E. Chứng minh: CD // OA và tứ giác OBEC là hình thoi.
c) Qua E vẽ đường thẳng a bất kỳ cắt đoạn thẳng AC. Lần lượt vẽ OM, DN, CP vuông
góc với đường thẳng a tại M, N, P. Chứng minh: DN = OM + CP.
cho điểm a nằm ngoài đường tròn (o;r) . kẻ tiếp tuyến ab (b là tiếp điểm ) . qua b kẻ bh vuông góc ao (h thuộc ao) và cắt (O) tại P
a) oa.oh có giá trị ko đổi
b) AD là tiếp tuyến (O)
c) KẺ AO cắt (O) tại M,N (M giữa A,N) . cm: AM là phân giác của góc ABP
Từ điểm A nằm ngoài đường tròn (O; R) kẻ các tiếp tuyến AB ,AC với đường tròn (O) ở E ( E khác D ). Gọi H là giao điểm của AO và BC a) chứng minh 4 điểm A,B,O,C cùng thuộc đường tròn và chứng minh AO vuông góc BC tại H b) chứng minh AE.AD=AH.AO c) gọi I là trung điểm của HA. Chứng minh tâm giác AIB đồng dạng với tam giác BHD
Cho đường trong (O;R). Từ 1 điểm M nằm ngoài đường tròn vẽ 2 tiếp tuyến MA và MB (A:B là 2 tiếp điểm). Vẽ cát tuyến MCD với đường tròn (C nằm giữa M và D), gọi I là trung điểm của CD. Chứng minh A,B cùng nằm trên đường tròn đường kính OM
Cho đường tròn (O) và đường thẳng (d) cắt đường tròn (O) tại hai điểm M; N ( đường thẳng (d) không đi qua O). Lấy điểm A thuộc đường thẳng (d) (A nằm ngoài đường tròn). Qua A kẻ hai tiếp tuyến AB và AC với đường tròn (B, C là tiếp điểm).a) Chứng minh đường tròn ngoại tiếp tam giác ABC luôn đi qua hai điểm cố định khi A di chuyển trên (d).b) Kẻ tiếp tuyến tại M và N của đường tròn (O) cắt nhau tại P. Chứng minh B; C; P thẳng hàng.c) Kẻ đường kính BOD, đường thẳng qua O vuông góc với BD cắt CD tại E. Chứng minh AOCE là hình thang cân
Cho hai đường tròn tâm O và O’ tiếp xúc ngoài tại H. Kẻ tiếp tuyến chung ngoài AB, điểm A thuộc tâm O và B thuộc tâm O’ . Tiếp tuyến chung trong tại H cắt tiếp tuyến chung ngoài AB tại M a, Chứng minh rằng góc AHB bằng 90° b, Tính góc OMO’ c, Tính AB biết OH=9cm ,O’H =4cm