a: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB tại I và I là trung điểm của AB
b: Xét ΔBAD có BO/BD=BI/BA
nên OI//AD
=>OI/AD=BO/BD=1/2
=>OI=1/2AD
Khi AD=6 thì OI=1/2*6=3cm
a: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB tại I và I là trung điểm của AB
b: Xét ΔBAD có BO/BD=BI/BA
nên OI//AD
=>OI/AD=BO/BD=1/2
=>OI=1/2AD
Khi AD=6 thì OI=1/2*6=3cm
cho điểm m nằm ngoài đường tròn (O;R).Kẻ các tiếp tuyến MA,MB với đường tròn (O) (A,B là các tiếp điểm ).Vẽ đường kính AD của đường tròn(O).Gọi H là giao điểm của MO và AB.
a/Chứng minh rằng :MO vuông góc AB tại H
b/Cho biết R = 15 cm và MO = 25 cm .Tính độ dài đoạn OH.
c/ Gọi G là giao điểm của BD và AM .Chứng minh :AM = MG.
d/ Gọi I là giao điểm của tia OM và đường tròn (O). Chứng minh I là tâm đường tròn nội tiếp tam giác MAB . Tính độ dài đoạn thẳng BD theo R ,r với r là bán kính của đường tròn nội tiếp tam giác MAB.
cho đường tròn tâm (o) từ điểm M nằm ngoài đường tròn kẻ hai tiếp tuyến MA,MB với đườn tròn (o)(A và B là hai tiếp tuyến).Gọi I là giao điểm của OM và AB; từ B kẻ đườn kính BC của đường tròn(o),đường thẳng MC cắt đường tròn (o) tai D (D khác C)
a)Chứng minh:4 điểm M,A,O,B cùng thuộc một đường tròn
b)Chứng minh:OM vuông với AB và MD.MC=MI.MO
c)Qua O vẽ đường thẳng vuông góc với MC tại E và cắt đường thẳng BA tại F. Chứng minh: FC là tiếp tuyến của đường tròn (O)
Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) với B, C là hai tiếp điểm. Vẽ đường kính BD của đường tròn (O), AD cắt (O) tại E. Gọi H là giao điểm của OA và BC, K là trung điểm của ED. a) Chứng minh: A, B, O, C cùng thuộc một đường tròn và OA vuông góc với BC. b) Chứng minh: AE.AD = AC c) Vẽ OK và cắt BC tại F. Chứng minh: FD là tiếp tuyến của đường tròn
Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) với B, C là hai tiếp điểm. Vẽ đường kính BD của đường tròn (O), AD cắt (O) tại E. Gọi H là giao điểm của OA và BC, K là trung điểm của ED.
a) Chứng minh: A, B, O, C cùng thuộc một đường tròn và OA vuông góc với BC.
b) Chứng minh: AE.AD = AC
c) Vẽ OK và cắt BC tại F. Chứng minh: FD là tiếp tuyến của đường tròn
Cho đường tròn tâm O, bán kính R và M là một điểm nằm bên ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm). Gọi E là giao điểm của AB và OM.
a) Chứng minh tứ giác MAOB nội tiếp được trong một đường tròn.
b) Tính độ dài đoạn thẳng AB và ME biết OM = 5cm và R = 3cm.
c) Kẻ tia Mx nằm trong góc AMO cắt đường tròn tại 2 điểm phân biệt C và D (C nằm giữa M và D). Chứng minh rằng góc MEC = góc OED
Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn.Từ A kẻ hai tiếp tuyến AB,AC và cát tuyến AMN với đường tròn (B,C,M,N thuộc (O) và AM<AN).Gọi E là trung điểm của dây MN,I là giao điểm thứ hai của đường thẳng CE với đường tròn1)CM 5 điểm A,B,O,E,C cùng nằm trên một đường tròn 2)CM góc AOC=góc BIC3)CM BI // MN
Cho đường tròn tâm o và điểm m nằm ngoài đường tròn kẻ các tiếp tuyến ma,mb a,CMR bốn điểm ABMO cùng nằm trên 1 đg tròn b, CMR ab vuông góc ôm c, CMR ao.am=mo.ah d,CMR mo là tiếp tuyến của đường tròn tâm b bán kính bh