Đặt \(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{t}=k\)
=>\(x=yk;y=kz;z=kt\)
Ta có: \(\left(\dfrac{x+y+z}{y+z+t}\right)^3\)
\(=\left(\dfrac{yk+kz+kt}{y+z+t}\right)^3=\left(\dfrac{k\left(y+z+t\right)}{y+z+t}\right)^3=k^3\left(1\right)\)
Ta có: \(\dfrac{x}{t}=\dfrac{yk}{t}=\dfrac{k^2z}{t}=\dfrac{k^3t}{t}=k^3\left(2\right)\)
Từ (1) và (2) suy ra \(\left(\dfrac{x+y+z}{y+z+t}\right)^3=\dfrac{x}{t}\)
Vậy \(\left(\dfrac{x+y+z}{y+z+t}\right)^3=\dfrac{x}{t}\)
Cho mk 1 like nhé ^_^