Cho \(\left[{}\begin{matrix}x,y,z\ne0\\x\left(\dfrac{1}{y}+\dfrac{1}{z}\right)+y\left(\dfrac{1}{z}+\dfrac{1}{x}\right)+z\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=-2\\x^3+y^3+z^3=1\end{matrix}\right.\).Tính A=\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
Tìm x
\(\dfrac{15x}{x^2+3x-4}-1=12\left(\dfrac{1}{x+4}+\dfrac{1}{3x-3}\right)\)
cho x,y >0 với x+y=1. Tìm GTNN của biểu thức
A=\(\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2\)
Phân tích đa thức thành nhân tử
a, 5x-10\(x^2\)
b, \(\dfrac{1}{2}x\left(x^2-4\right)+4\left(y+2\right)\)
c, \(x^4-y^6\)
d, \(x^3+y\left(1-3x^2\right)+z\left(3y^2-1\right)-y^3\)
e, \(x^3-4x^2+4x-1\)
f, \(x^2+2xy-8y^2+2xz+14yz+3z^2\)
g, \(x^4+6x^3-12x^2-8x\)
h, \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
Cho \(\left(x-\dfrac{1}{x}\right):\left(x+\dfrac{1}{x}\right)\)\(=\dfrac{1}{2}\). Tính \(\left(x^2-\dfrac{1}{x^2}\right):\left(x^2+\dfrac{1}{x^{2.}}\right)\)
Giải phương trình: \(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)
Cho \(\left|a\right|\ge\left|b\right|\), ta có: \(\dfrac{\left|a\right|}{2009+\left|a\right|}\ge\dfrac{\left|b\right|}{2009+\left|b\right|}\)
Chứng minh rằng: \(\dfrac{\left|x\right|}{2009+\left|x\right|}+\dfrac{\left|y\right|}{2009+\left|y\right|}\ge\dfrac{\left|x-y\right|}{2009+\left|x-y\right|}\)với các số x,y bất kỳ
Cho biểu thức \(A=\dfrac{x^2-x}{x^2-4x+4}:\left(\dfrac{x}{x-1}+\dfrac{1}{x-2}-\dfrac{x^2-2x-1}{x^2-3x+2}\right)\)
a, Tìm ĐKXĐ và rút gọn A
b,Tìm GTNN của biểu thức A khi x>1
tìm các số a và b sao cho phân thức \(\dfrac{x^2+5}{x^3-3x-2}\)viết được thành \(\dfrac{a}{x-1}+\dfrac{b}{\left(x+1\right)^2}\)