Ta có: \(\dfrac{\overline{ab}}{a+b}=\dfrac{\overline{bc}}{b+c}\)
\(\Rightarrow\overline{ab}\left(b+c\right)=\overline{bc}\left(a+b\right)\)
\(\Rightarrow ab^2+abc=abc+b^2c\)
\(\Rightarrow ab^2=b^2c\)
\(\Rightarrow ab=bc\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\rightarrowđpcm.\)
Ta có:
\(\dfrac{\overline{ab}}{a+b}=\dfrac{\overline{bc}}{b+c}\)
\(\Rightarrow\overline{ab}.\left(b+c\right)=\overline{bc}.\left(a+b\right)\)
\(\Rightarrow\left(10a+b\right)\left(b+c\right)=\left(10b+c\right)\left(a+b\right)\)
\(\Rightarrow10ab+10ac+b^2+bc=10ab+10b^2+ac+bc\)
\(\Rightarrow10ac+b^2=10b^2+ac\) (bớt mỗi bên đi \(10ab+bc\))
\(\Rightarrow10ac-ac=10b^2-b^2\Rightarrow9ac=9b^2\)
\(\Rightarrow ac=b^2\) (chia mỗi bên cho 9)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\) (đpcm)
Chúc bạn học tốt!!!