a/ Xét tg HBA và tg ABC có :
góc B chung
=> Tg HBA ~ tg ABC (gg)
a/ Xét tg HBA và tg ABC có :
góc B chung
=> Tg HBA ~ tg ABC (gg)
1. Cho ΔABC vuông tại A, đường cao AH
a/ Cm: ΔABC đồng dạng với ΔHAC
b/ Tia phân giác góc ABC cắt AH tại D và AC tại E. Cm: ΔADE cân
2. Cho ΔABC vuông tại C có góc BAC = 60 độ. Lấy 1 điểm D tùy ý trên cạnh AB sao cho BD <\(\frac{AB}{2}\) .
Qua điểm D vẽ tia Dx ⊥ AB tại D, tia Dx cắt AC tại E. Gọi I là giao điểm của BC và DE.
a/ Cm: ΔDBI đồng dạng với ΔCBA
b/ Tính diện tích ΔACD, biết diện tích ΔABE là 124cm2
Cho \(\Delta\)ABC vuông tại A có AB=12cm , AC=16cm . Vẽ đường cao AH
a) Chứng minh \(\Delta\)HBA \(\sim\) \(\Delta\)ABC
b) Tính BC,AH ?
c) Vẽ đường phân giác AD của tam giác ABC ( D thuộc BC ) . Trong \(\Delta\)ADB kẻ phân giác DE ( E\(\in\)AB ). Trong \(\Delta\)ADC kẻ phân giác DF ( F\(\in\)AC ). Chứng minh \(\dfrac{EA}{EB}\times\dfrac{DB}{DC}\times\dfrac{FC}{FA}=1\)
Cho Δ ABC vuông tại A, biết AB = 6cm, BC = 10cm, đường cao AH.
a) CM: Δ ABC ~ Δ HBA
b) Tính tỉ số diện tích: ΔHBAΔABCΔHBAΔABC
c) Đường phân giác góc ABC cắt cạnh AC tại D. Tính DC.
d) Gọi I là giao điểm của AH và BD, K là hình chiếu của điểm C trên đường thẳng BD. CM: góc BIA = góc BAK.
Cho ΔABC vuông tại A ( AB < AC ), đường cao AH ( H ϵ BC ). Trên đoạn thẳng HC lấy điểm D sao cho HD=HA. Đường thẳng vuông góc với BC tại D cắt AC ở E. Gọi M là trọng điểm của đoạn thằng BE, CM.
a/ ΔDEC ∞ ΔABC
b/ ΔADC ∞ ΔBEC
c/ AB . AC = BC . AH
d/ ∠AHM= 45 độ
Cho ΔABC vuông tại A, AB=9cm, AC=12cm, phân giác AD, đường cao AH, DE ⊥ AC.
a, CM: ΔABC ∼ ΔHBA.
b, Tính BD, CD, AH, DE.
c, Tính \(\frac{S_{ABC}}{S_{EDC}}\)
d, Tính SABD, SACD
cho \(\Delta\)ABC vuông tại A có AB>AC . Lấy M là 1 điểm tùy ý . Qua M kể đường thẳng vuông góc với BC và cắt AB tại I ,cắt AC tại D
a/ CM :\(\Delta ABC\sim\Delta MDC\)
b/ CM : BI.BA=BM.BC
c/ CM : góc BAM=góc ICB từ đó CM: AB là tia phân giác góc MAK (\(CI\cap BD\) tại k)
d/ cho AB=8cm và AC=6 cm . Khi AM là tia phân giác trong\(\Delta ABC\) hãy tính diện tích tứ giác AMBD
cho tam giác ABC vuông tại A có AB=12cm , AC =16cm .Kẻ đường cao AH và đường phân giác AD của tam giác
a)chứng minh ΔHBA∼ΔABC
b)tìm tỉ số diện tích ΔABD va ΔADC
c)tính BC,CD,AH
Cho tam giác ABC vuông tại A, đường cao AH, AB = 6cm, AC = 8cm.
a) Tính AH, HB, HC
b) Gọi M là trung điểm của BC, D và E là hình chiếu của H trên AB, AC. Chứng minh AD.AB = AE.AC. Từ đó suy ra \(\Delta AED\) đồng dạng \(\Delta ABC\)
c) Chứng minh \(DE\perp AM\)
1. Cho ΔABC nhọn, đường cao AH. Vẽ HD vuông góc với AC tại D.
a/ Cm: ΔAHD đồng dạng ΔACH
b/ Vẽ HE ⊥ AB tại E. CM: góc AED = góc AHD
2. Cho ΔABC vuông tại A, AB = 6cm. AC = 8cm. M là trung điểm AC, kẻ MK vuông góc BC tại K.
A/ Cm ΔABC đồng dạng ΔKMC
b/ Tính diện tích ΔMKC