3) Hãy ghi đáp án và lời giải cho câu hỏi sau:
Cho △ABC có \(b=7;c=5;\cos A=\dfrac{3}{5}\). Đường cao \(h_a\) của △ABC là:
\(A.\dfrac{7\sqrt{2}}{2}\)
\(B.8\)
\(C.8\sqrt{3}\)
\(D.80\sqrt{3}\)
cho tam giác ABC thoả mãn
a, \(\dfrac{1+cosB}{1-cosB}\)= \(\dfrac{2a+c}{2a-c}\) CM: tam giác cân
b, tanB.tanC = \(\dfrac{tanA}{sinB.sinC}\) CM: tam giác vuông
c, \(\left\{{}\begin{matrix}\dfrac{1+cosC}{sinC}=\dfrac{2a+b}{\sqrt{4a^2-b^2}}\\a^2\left(b+c-a\right)=b^3+c^3-a^3\end{matrix}\right.\) CM: tam giác đều
1) Cho △ABC. Khẳng định nào đúng?
\(A.S_{\Delta ABC}=\dfrac{1}{2}a.b.c\)
\(B.\dfrac{a}{\sin A}=R\)
\(C.\cos B=\dfrac{b^2+c^2-a^2}{2bc}\)
\(D.m_c^2=\dfrac{2b^2+2a^2-c^2}{4}\)
Tam giác ABC có \(b+c=2a\). Chứng minh rằng :
a) \(2\sin A=\sin B+\sin C\)
b) \(\dfrac{2}{h_a}=\dfrac{1}{h_b}+\dfrac{1}{h_c}\)
tam giác ABC có hai đường trung tuyến BM, CN vuông góc với nhau và có BC=3, góc BAC=30 độ. Tính diện tích tam giác ABC.
A. S=3\(\sqrt{3}\)
B. S=6\(\sqrt{3}\)
C. S=9\(\sqrt{3}\)
D. S=\(\dfrac{\text{}\text{}3\sqrt{3}}{2}\)
Cho tam giác ABC có bàn kính đường tròn ngoại tiếp bằng 1 và:
\(\dfrac{\sin A}{m_a}+\dfrac{\sin B}{m_b}+\dfrac{\sin C}{m_c}=\sqrt{3}\)
với \(m_a,m_b,m_c\)là độ dài đường trung tuyến tương ứng kẻ từ A,B,C.CMR:tam giác ABC đều
CM với mọi tam giác ABC, ta có
a, (b2-c2)cos A = a(c.cos C - b.cos B)
b, S = \(\dfrac{1}{2}\)\(\sqrt{AB^2.AC^2-\left(\overrightarrow{AB}.\overrightarrow{AC}\right)^2}\)
Cho tam giác ABC biết a=2\(\sqrt{3}\), b=2\(\sqrt{2}\), c=\(\sqrt{6}\) -\(\sqrt{2}\) .Tính góc lớn nhất của tam giác.
Cho tam giác ABC có diện tích S. R và r lần lượt là bán kính đường tròn ngoại tiếp và nội tiếp của tam giác ABC.Cmr:
\(30R+4r\le64\dfrac{\sqrt{3}}{3}\sqrt{S}\)