Hình bạn tự vẽ nha!
a) Xét 2 \(\Delta\) \(ABE\) và \(ACD\) có:
\(AE=AD\left(gt\right)\)
\(AB=AC\left(gt\right)\)
\(\widehat{A}\) chung
=> \(\Delta ABE=\Delta ACD\left(c-g-c\right).\)
b) Theo câu a) ta có \(\Delta ABE=\Delta ACD.\)
=> \(\widehat{AEB}=\widehat{ADC}\) (2 góc tương ứng).
=> \(\widehat{ABE}=\widehat{ACD}\) (2 góc tương ứng)
Hay \(\widehat{DBI}=\widehat{ECI}.\)
Ta có:
\(\left\{{}\begin{matrix}\widehat{ADC}+\widehat{BDC}=180^0\\\widehat{AEB}+\widehat{CEB}=180^0\end{matrix}\right.\) (các góc kề bù).
Mà \(\widehat{AEB}=\widehat{ADC}\left(cmt\right)\)
=> \(\widehat{BDC}=\widehat{CEB}.\)
Hay \(\widehat{BDI}=\widehat{CEI}.\)
Lại có:
\(\left\{{}\begin{matrix}AD+DB=AB\\AE+EC=AC\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\AD=AE\left(gt\right)\end{matrix}\right.\)
=> \(DB=EC.\)
Xét 2 \(\Delta\) \(IBD\) và \(ICE\) có:
\(\widehat{DBI}=\widehat{ECI}\left(cmt\right)\)
\(BD=EC\left(cmt\right)\)
\(\widehat{BDI}=\widehat{CEI}\left(cmt\right)\)
=> \(\Delta IBD=\Delta ICE\left(g-c-g\right)\left(đpcm\right).\)
Chúc bạn học tốt!