Bài 4: Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Anh

Cho \(\Delta\)ABC có AB=AC. Lấy điểm D, E lần lượt trên cạnh AB, AC sao cho AD=AE. Gọi I là giao điểm của BE và CD. Chứng minh rằng :

1, \(\Delta\)ABE= \(\Delta\)ACD

2, \(\Delta\)IBD= \(\Delta\) ICE.

Vũ Minh Tuấn
10 tháng 11 2019 lúc 22:34

Hình bạn tự vẽ nha!

a) Xét 2 \(\Delta\) \(ABE\)\(ACD\) có:

\(AE=AD\left(gt\right)\)

\(AB=AC\left(gt\right)\)

\(\widehat{A}\) chung

=> \(\Delta ABE=\Delta ACD\left(c-g-c\right).\)

b) Theo câu a) ta có \(\Delta ABE=\Delta ACD.\)

=> \(\widehat{AEB}=\widehat{ADC}\) (2 góc tương ứng).

=> \(\widehat{ABE}=\widehat{ACD}\) (2 góc tương ứng)

Hay \(\widehat{DBI}=\widehat{ECI}.\)

Ta có:

\(\left\{{}\begin{matrix}\widehat{ADC}+\widehat{BDC}=180^0\\\widehat{AEB}+\widehat{CEB}=180^0\end{matrix}\right.\) (các góc kề bù).

\(\widehat{AEB}=\widehat{ADC}\left(cmt\right)\)

=> \(\widehat{BDC}=\widehat{CEB}.\)

Hay \(\widehat{BDI}=\widehat{CEI}.\)

Lại có:

\(\left\{{}\begin{matrix}AD+DB=AB\\AE+EC=AC\end{matrix}\right.\)

\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\AD=AE\left(gt\right)\end{matrix}\right.\)

=> \(DB=EC.\)

Xét 2 \(\Delta\) \(IBD\)\(ICE\) có:

\(\widehat{DBI}=\widehat{ECI}\left(cmt\right)\)

\(BD=EC\left(cmt\right)\)

\(\widehat{BDI}=\widehat{CEI}\left(cmt\right)\)

=> \(\Delta IBD=\Delta ICE\left(g-c-g\right)\left(đpcm\right).\)

Chúc bạn học tốt!

Khách vãng lai đã xóa

Các câu hỏi tương tự
thuytrung
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Miyamoto Hanako
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Thùy Linh
Xem chi tiết
Minh Anh
Xem chi tiết
Tình Nguyễn
Xem chi tiết
game giai tri
Xem chi tiết
Minh Anh
Xem chi tiết