Cho \(\Delta\)ABC có AB=AC, gọi M là trung điểm của BC.
1, Chứng minh rằng: \(\Delta\)ABM=\(\Delta\)ACM
2, Chứng minh rằng: AM\(\perp\)BC
3, Kẻ MH\(\perp\)AB(H\(\in\)AB), và MK \(\perp\)AC(K\(\in\)AC). Chứng minh rằng: HM=MK
4, Trên tia đối của tia MH lấy điểm D, trên tia đối của MK lấy điểm E sao cho MD=ME. Chứng minh rằng:DE\(_{ }\) song song với BC.
Xét \(\Delta ABC\) có:
c) Ta có \(\Delta ABC\) cân tại \(A\left(cmt\right).\)
=> \(\widehat{B}=\widehat{C}\) (tính chất tam giác cân).
Xét 2 \(\Delta\) vuông \(HBM\) và \(KCM\) có:
\(\widehat{MHB}=\widehat{MKC}=90^0\left(gt\right)\)
\(BM=CM\) (như ở trên)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
=> \(\Delta HBM=\Delta KCM\) (cạnh huyền - góc nhọn).
=> \(HM=KM\) (2 cạnh tương ứng).
Chúc bạn học tốt!
Bạn giải giúp mình câu d, luôn được không?