Lời giải:
a)
Vì tam giác $ABC$ cân tại $A$ nên $AB=AC$ và \(\widehat{ABC}=\widehat{ACB}\) hay \(\widehat{ABM}=\widehat{ACM}\)
Xét tam giác $AMB$ và $AMC$ có:
\(\left\{\begin{matrix} \widehat{ABM}=\widehat{ACM}\\ BM=CM\\ AB=AC\end{matrix}\right.\Rightarrow \triangle AMB=\triangle AMC(c.g.c)\)
b) Từ hai tam giác bằng nhau trên suy ra \(\widehat{AMB}=\widehat{AMC}\)
Mà \(\widehat{AMB}+\widehat{AMC}=\widehat{BMC}=180^0\)
Suy ra \(\widehat{AMB}=\widehat{AMC}=90^0\Rightarrow AM\perp BC\)
Do đó áp dụng định lý Pitago:
\(AB^2=AM^2+BM^2\)
\(\Leftrightarrow AB^2=AM^2+(\frac{BC}{2})^2\)
\(\Leftrightarrow 13^2=AM^2+5^2\Rightarrow AM=12\) (cm)
Theo tính chất đường trung tuyến thì \(AG=\frac{2}{3}AM=\frac{2}{3}.12=8\) (cm)