Cho tam giác ABC. Ở phía ngoài tam giác, vẽ các tam giác vuông cân tại A là ABD, ACE. Vẽ hình bình hành ADIE. Chứng minh rằng :
a) \(IA=BC\)
b) \(IA\perp BC\)
Cho tam giác ABC. Ở phía ngoài tam giác, vẽ các tam giác vuông cân tại A là ABD,ACE. Vẽ hình bình hành ADIE. Chứng minh rằng:
a) IA=BC b) IA vuông góc BC
Cho tam giác ABC vuông cân tại A, vẽ về phía ngoài tam giác ABC tam giác BCD vuông cân tại B. Gọi N là điểm bất kỳ trên cạnh BD. Trung trực của CN cắt AB tại M. Chứng minh tam giác CMN là tam giác vuông cân.
Cho tam giác ABC (AB < AC), vẽ E, F, G lần lượt là trung điểm AB, AC, BC.
a/ Chứng minh tứ giác BEFC là hình thang.
b/ Vẽ AH vuông góc BC (H thuộc BC). Chứng minh tứ giác EFGH là hình thang cân.
Cho hình bình hành ABCD có \(\widehat{A}=\alpha>90^0\). Ở phía ngoài hình bình hành vẽ các tứ giác đều ADF, ABE
a) Tính \(\widehat{EAF}\)
b) Chứng minh rằng tam giác CEF là tam giác đều
cho tam giác ABC cân ở A có điểm M trên cạnh BC. kẻ MD // AC và ME // AB(D thuộc AB, E thuộc AC .
a, chứng minh ADME là hình bình hành.(đã làm)
b, tam giác EMC là tam giác gì?
c, so sánh MD+ME với AC.
cho tam giác ABC vuông cân tại A. Trên đoạn thằng AB lấy điểm E, trên tia đối của tia CA lấy điểm F sao cho BE=CF. Vẽ hình bình hành BEFD. Gọi I là giao điểm của EF và BC. Qua E kẻ đường thẳng vuông góc với Ab cắt BI tại K
a. cmr tứ giác EKFC là hình bình hành
b. qua I kẻ đường thẳng vuông góc với AF cắt BD tại M. cmr: AI=BM
c. cmr C đối xứng với D qua MF
Cho tam giác ABC từ một điểm E trên cạnh AC vẽ đường song song với BC cắt AB tại F và đường thẳng song song với AB cắt BC tại D. Giả sử AE=BF a, Chứng minh tam giác AED cân b, Chứng minh AD là phân giác góc A
Cho hình bình hành ABCD góc A<90 độ.Đường phân giác của góc A cắt đoạn BC tại I.
a)CMR:AB=BI
b) Kẻ phân giác của góc BCD cắt AD tại H.CMR:AICH là hình bình hành.
c)Gọi Ở là trung điểm của AC kẻ BE vuông góc AI tại E.Tứ giác AEOD là hình gì?chứng minh?
d)Kẻ DF vuông góc CH tại F.CMR:BD,AC,IH,EF đồng qui.