ở đề câu a bạn ghi ko rõ lắm nên mình chọn điểm H thay điểm D nhé
a)gọi giao điểm của BC và NH là K
xét \(\Delta BMH\) và \(\Delta CMN\) có:
MB=MB(gt)
MH=MN(gt)
\(\widehat{BMH}=\widehat{NMH}\)(2 góc đối đỉnh)
=>\(\Delta BMH=\Delta NMC\left(c.g.c\right)\)
=> BH=NC
\(\widehat{HBM}=\widehat{NCM}\) =>BH//NC
=> tứ giác BNHD là hình bình hành( theo định lý 2)
ta có:
BH=NC
NC=AN
=> BH=AN
AN//BH
=> tứ giác ABHN là hình bình hành
b)
nếu BHCN là hình chữ nhật thì KB=KH=KC=KN
=> góc KCN= góc KNC(1)
ta có tứ giác ABHN là hình bình hành nên AB//NH
=> góc BCA= góc KNC(2)
từ (1)(2) => góc KCN= góc BCA
=> tam giác ABC cân tại A
vậy để tứ giác BHCN là hình chữ nhật thì tam giác ABC phải cân tại B