Xét \(\Delta KEH\) có \(\widehat{K}+\widehat{E}+\widehat{H}=180^0\)
\(\Leftrightarrow\widehat{K}+60^0+50^0=180^0\)
\(\Rightarrow\widehat{K}=180^0-\left(60^0+50^0\right)=70^0\)
Vì KD là tia phân giác của \(\widehat{EKH}\)
\(\Rightarrow\widehat{EKH}=\widehat{DKH}=\frac{\widehat{EKH}}{2}=\frac{70}{2}=35^0\)
* Vì \(\widehat{EDK}\) là góc ngoài đỉnh D của \(\Delta KDH\)
\(\Rightarrow\widehat{EDK}=\widehat{DKH}+\widehat{H}\)
= 350+500 = 850
* Vì \(\widehat{KDH}\) là góc ngoài của đỉnh D của \(\Delta KDE\) nên
\(\widehat{KDH}=\widehat{K}+\widehat{D}\)
= 350 +600 = 950
Vậy góc EDK=850
Góc KDH= 950