cho \(\Delta\) ABC có AB<AC. Trên cạnh AC lấy điểm D sao cho AD=AB. Gọi M là trung điểm của đoạn BD.
a) Chứng minh \(\Delta\) ABM = \(\Delta\) ADM.
b) tia AM cắt BC tại K. Chứng minh \(\Delta\) BKD cân
c) trên tia đối của tia BA lấy đêm E sao cho BE= DC. Chứng minh rằng 3 điểm E,K,D thẳng hàng.
d) Chứng minh AK vuông góc với EC
a) Xét \(\Delta\)ABM và \(\Delta\)ADM có:
AB = AD (gt)
AM chung
BM = DM (suy từ gt)
=> \(\Delta\)ABM = \(\Delta\)ADM (c.c.c)
b) Vì \(\Delta\)ABM = \(\Delta\)ADM (câu a)
=> \(\widehat{BAM}\) = \(\widehat{DAM}\) (2 góc t/ư)
hay \(\widehat{BAK}\) = \(\widehat{DAK}\)
Xét \(\Delta\)ABK và \(\Delta\)ADK có:
AB = AD (gt)
\(\widehat{BAK}\) = \(\widehat{DAK}\) (c/m trên)
AK chung
=> \(\Delta\)ABK = \(\Delta\)ADK (c.g.c)
=> BK = DK (2 cạnh tương ứng)
Do đó \(\Delta\)BKD cân tại K
c) Do \(\Delta\)ABK = \(\Delta\)ADK (câu b)
nên \(\widehat{ABK}\) = \(\widehat{ADK}\) (2 góc tương ứng)
Ta có: \(\widehat{ABK}\) + \(\widehat{EBK}\) = 180o (kề bù)
\(\widehat{ADK}\) + \(\widehat{CDK}\) = 180o (kề bù)
mà \(\widehat{ABK}\) = \(\widehat{ADK}\) nên \(\widehat{EBK}\) = \(\widehat{CDK}\)
Xét \(\Delta\)EBK và \(\Delta\)CDK có:
EB = CD (gt)
\(\widehat{EBK}\) = \(\widehat{CDK}\) (c/m trên)
BK = DK (c/m trên)
=> \(\Delta\)EBK = \(\Delta\)CDK (c.g.c)
=> \(\widehat{BKE}\) = \(\widehat{DKC}\) (2 góc tương ứng) (1)
mà \(\widehat{BKD}\) + \(\widehat{DKC}\) = 180o (2)
Thay (1) vào (20 ta được:
\(\widehat{BKE}\) + \(\widehat{DKC}\) = 180o
mà 2 góc này kề nhau nên E, K, D thẳng hàng
d) Gọi giao điểm của AK và EC là F
Vì \(\Delta\)ABK = \(\Delta\)ADK (c/m trên)
nên \(\widehat{BAK}\) = \(\widehat{DAK}\) (2 góc tương ứng)
hay \(\widehat{EAF}\) = \(\widehat{CAF}\)
Do \(\Delta\)EBK = \(\Delta\)CDK nên EB = CD ( 2 cạnh tương ứng)
Lại có: AB + EB = AE
AD + CD = AC
mà AB = AD; EB = CD nên AE = AC
Xét \(\Delta\)EAF và \(\Delta\)CAF có:
EA = CA (c/m trên)
\(\widehat{EAF}\) = \(\widehat{CAF}\) (c/m trên)
AF chung
=> \(\Delta\)EAF = \(\Delta\)CAF (c.g.c)
=> \(\widehat{AFE}\) = \(\widehat{AFC}\) (2 góc tương ứng)
mà \(\widehat{AFE}\) + \(\widehat{AFC}\) = 180o (kề bù)
=> \(\widehat{AFE}\) = \(\widehat{AFC}\) = \(\frac{180^o}{2}\) = 90o
Do đó AK \(\perp\) EC.
a) Xét tam giác ABM và tam giác ADM có:
AM chung
AB= AD (gt)
BM= MD (M là trung điểm của đoạn BD)
<=> \(\Delta ABM=\Delta ADM\left(c.c.c\right)\)
b) Xét tam giác BAK và tam giác DAK có:
AB= AD
Góc BAK bằng góc DAK
AK chung
<=> \(\Delta BAK=\Delta DAKl\left(c.g.c\right)\)
<=> BK=KD (hai cạnh tương ứng)
<=> Tam giác BKD cân tại K