Cho \(\Delta ABC\) cân tại A, \(\widehat{A}\) = 20o, BC = 2cm. Trên cạnh AB lấy điểm D sao cho \(\widehat{ACD}\) = 10o. Tính độ dài của AD.
Cho tam giác ABC cân tại A, biết góc A = 20o, BC = 2cm. Trên tia AB lấy điểm D sao cho góc ACD = 10o. Tính độ dài của AD.
Cho ΔABC cân tại A, \(\widehat{A}\) = 20o, BC = 2cm. Trên cạnh AB lấy điểm D sao cho \(\widehat{ACD}\) = 10o. Tính độ dài của AD.
Cho tam giác ABC cân tại A. Trên các cạnh bên AB, AC lấy theo thứ tự các điểm D và E sao cho AD = AE.
a) Chứng minh rằng BDEC là hình thang cân.
b) Tính các góc của hình thang cân đó, biết rằng \(\widehat{A}\)=500
1.Cho tam giác đều BSC, phía trong tam giác vẽ tam giác vuông cân ABC.trong tam giác abc lấy điểm D sao cho góc DBC=ACD=30 độ. Chứng minh tứ giác SADC là hình thang
2.Cho hình thang vuông ABCD (góc C=B=90 độ). Có AB=Bc=1/2 DC. Lấy điểm M bất kì trên cạnh AB, lấy điểm N trên cạnh AD sao cho góc NMC=90 độ. Chứng minh rằng khi M thay đổi trên cạnh AB thì góc MNC có số đo không đổi.
Giúp mình với,giải chi tiết cho mình nha!
Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF
a. CM: AK = KC.
b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF
Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.
a. CM: Tứ giác ADME là hình bình hành.
b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?
c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?
d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.
Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.
a. Chứng minh AE vuông góc BF
b. Chứng minh tứ giác BFDC là hình thang cân.
c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.
d. Chứng minh M, E, D thẳng hàng.
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED
Cho tam giác ABC vuông cân tại A. Trên các cạnh góc vuông AB,AC lấy hai điểm D,E sao cho AD=AE. Qua D vẽ đường thẳng vuông góc với BE cắt BC ở K. Qua A vẽ đường thẳng vuông góc với BE cắt BC ở H. Gọi M là giao điểm của DK và AC
a) CM tam giác MDC cân
b) CM HK=HC
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho CN=BM. Từ M kẻ MI song song với AC (I thuộc cạnh bC). Gọi O là giao điểm của MN và BC. CMR: OM=ON
Cho tam giác ABC vuông cân tại A , AB=3cm , điểm M thuộc cạnh BC . Kẻ MD vuông góc AB , ME vuông góc với AC
Tứ giác ADME là hình gì ? Vì sao ?Tính chu vi tứ giác ADMEDiểm M ở vị trí nào trên cạnh BC thì AM có độ dài ngắn nhất tính độ dài ngắn nhất của AM