Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đinh Phương Anh

cho dãy tỉ số bằng nhau: \(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\) chứng minh \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\)

giúp mình nhanh, mình đang cần gấp
Nguyễn Kim Thảo
28 tháng 3 2017 lúc 21:52

Theo đầu bài ta có :\(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\)

Lại có a,b,c\(\ne\)0 vì mẫu phải khác 0

=>\(\dfrac{2bz-3cy}{a}.\dfrac{a}{a}=\dfrac{3cx-az}{2b}.\dfrac{2b}{2b}=\dfrac{ay-2bx}{3c}.\dfrac{3c}{3c}\)

=>\(\dfrac{2abz-3acy}{a^2}=\dfrac{6bcx-2abz}{4b^2}=\dfrac{3acy-6bcx}{9c^2}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có :

\(\dfrac{2abz-3acy}{a^2}=\dfrac{6bcx-2abz}{4b^2}=\dfrac{3acy-6bcx}{9c^2}=\dfrac{2abz-3acy+6bcx-2abz+3acy-6bcx}{a^2+4b^2+9c^2}=\dfrac{0}{a^2+4b^2+9c^2}=0\)

\(\dfrac{2abz-3acy}{a^2}=0\Rightarrow2abz=3acy\) => 2bz = 3cy => \(\dfrac{z}{3c}=\dfrac{y}{2b}\) (1)

\(\dfrac{6bcx-2abz}{4b^2}=0\) => 6bcx = 2abz => 3cx = az => \(\dfrac{x}{a}=\dfrac{z}{3c}\) (2)

Từ (1) và (2) =>\(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\) (đpcm)


Các câu hỏi tương tự
Cao Hồ Ngọc Hân
Xem chi tiết
Thảo Công Túa
Xem chi tiết
Đỗ Thu Trà
Xem chi tiết
Nguyễn Hà Phương
Xem chi tiết
fairy tail
Xem chi tiết
Vũ Phương Thảo
Xem chi tiết
Vân Nguyễn Thị
Xem chi tiết
Vân Nguyễn Thị
Xem chi tiết
Quỳnh Mai Đỗ
Xem chi tiết