Cho dãy số (Un) xác định bởi: { U1=1; Un+1=1/2un + 3/2; ∀n ϵ N*
Tình giới hạn của dãy số (Un)
Ai đó giúp em với, em cảm ơn rất nhiều ạ
cho dãy số (un) được xác định bởi : \(\left\{{}\begin{matrix}u_1=0;u_2=1\\2u_{n+2}=u_{n+1}+u_n,\left(n\ge1\right)\end{matrix}\right.\)
a) Chứng minh rằng:un+1= -1/2 un+1, \(\forall n\ge1\)
b) đặt vn=un-2/3. Tính vn theo n từ đó tìm lim un
Cho dãy số (un) thỏa mãn u1 = \(\dfrac{2}{3}\) và un+1 = \(\dfrac{u_n}{2\left(2n+1\right)u_n+1}\left(n\ge1\right)\). Tìm số hạng tổng quát un của dãy. Tính lim un
Cho dãy số xác định bởi u1=1/2 un+1=un^2+1/2
a,chứng minh rằng un<1mọi n
b,chứng minh ưn trang và bị chặn trên
c,Tính lim un
Giới hạn vô cực
1.Tìm lim\(\frac{\sqrt{4n^2+n-1}+n}{\sqrt{n^4_{ }2n^3-1}-n}\)
2. Tìm lim \(\left(-2n^2+4\right)^3\)
3. Cho dãy số (un): \(\left\{{}\begin{matrix}u1=-1\\un+1=un+3\end{matrix}\right.\)
Tính : lim\(\frac{un}{5n+2020}\)
4. Cho dãy số (un):
\(\left\{{}\begin{matrix}un=1\\un+1=\frac{1}{2}\end{matrix}\right.un+\frac{3}{2}\). Tìm giới hạn dã số (un)
5. Cho dãy số (un):
\(\left\{{}\begin{matrix}u1=2\\un+1=un+\frac{1}{2^n}\end{matrix}\right.\)
Tìm lim(un-2)
Cho dãy số (Un) với Un = \(\sqrt{n^2+an+5}-\sqrt{n^2+1}\) Trong đó a là tham số thực.Tìm a để lim Un = -1
lim(\(\sqrt[3]{1-n^2-8n^3}\) +2n)
lim[\(\sqrt{n}\left(\sqrt{n+1}-\sqrt{n-1}\right)\)]
cho dãy số (un):un=\(\frac{n}{1+n^2+n^4}\)với mọi n=1,2,3,....tính lim(u1+u2+...+un)
tính C=lim\(\frac{3\cdot2^n-3^n}{2^{n+1}+3^{n+1}}\)
tính lim(\(n^2sin\frac{n\Pi}{5}\)-\(2n^3\))
Cho dãy số thực (un) xác định bởi : \(\left\{{}\begin{matrix}u_1=\dfrac{3}{2}\\u_n=\sqrt{3u_{n-1}-2},\forall n\ge2\end{matrix}\right.\)
Chứng minh dãy số (un) có giới hạn hữu hạn khi \(n\rightarrow\infty\)
cho dãy số (un) có \(a=lim\left(1+\dfrac{-1}{2^n}\right)\). tìm gioi hạn \(lim\left(\dfrac{n^5}{n^4-2n^3+1}-an\right)\)