thay \(n=5\)vào phương trình trên => \(log_3\left(2u_5-63\right)=2log_4\left(u_5-32\right)=t\) => \(\left\{{}\begin{matrix}2u_5-63=3^t\\u_5-32=2^t\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}2u_5-63=3^t\\2u_5+32=2.2^t\end{matrix}\right.\)=>\(1+2.2^t=2^t\Leftrightarrow\dfrac{1}{3^t}+2.\left(\dfrac{2}{3}\right)^t=1\)(1)
Vì \(y=\dfrac{1}{3^t}+2.\left(\dfrac{2}{3}\right)^t\) là hàm nghịch biến trên R nên (1) có nghiệm duy nhất t=2 => \(u_5=36\). Thay vào pt ban đầu: \(log_3\left(2.36-63\right)=2log_4\left(u_n-8n+8\right)\)\(\Leftrightarrow u_n=8n-4=4+8\left(n-1\right)\)
=> \(S_n=\dfrac{n\left(8+8\left(n-1\right)\right)}{2}=4n^2\)
=> \(\dfrac{u_n.S_{2n}}{u_{2n}.S_n}=\dfrac{\left(8n-4\right)\left(16n^2\right)}{\left(16n-4\right).4n^2}=\dfrac{4\left(2n-1\right)}{\left(4n-1\right)}< \dfrac{148}{75}\)
=> \(n< 19\)\(\Rightarrow n_{max}=18\)