Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ruby

cho ΔABC vuông tại A, có \(\widehat{C}=15^o\). Trên tia BA lấy điểm O sao cho BO = 2AC. CMR: ΔOBC cân

Nguyễn Mai Phương
13 tháng 1 2019 lúc 20:19

hình bạn tự vẽ nhé !

Ta có : \(\Delta ABC:\)\(\widehat{A}\) = \(90^{^0}\) ( gt )

\(\widehat{B}\) + \(\widehat{ACB}\) = \(90^{^0}\) ( T/c Δ vuông )

\(\widehat{ACB}\) = \(15^{^0}\) ( gt)

\(\widehat{ABC}\) \(=90^{^0}-15^{^0}=75^{^0}\)

- Trên nửa mặt phẳng chứa A có bờ là BC , vẽ tam giác đều MBC

\(\widehat{MBC}\) \(=60^{^0}\)( T/c Δ đều )

\(\widehat{MBC}\) \(=75^{^0}-60^{^0}=15^{^0}\)

- Lấy H là trung điểm BO ⇒ HB = HO = AC

Xét ΔHBM và ΔACB có :

HB = HC ( cmt )

\(\widehat{HBM}\) = \(\widehat{ACB}\) \(\left(=15^0\right)\)

BM = CB ( Δ MBC đều )

⇒ Δ HBM = Δ ACB ( c - g - c )

\(\widehat{BHM}\) = \(\widehat{CAB}\) ( hai góc tương ứng )

\(\widehat{CAB}\) = \(90^{^0}\) (gt)

\(\widehat{BHM}\) = \(\widehat{MHC}\) = \(90^{^0}\)

- Xét Δ HBM và Δ HOM có :

HM chung

\(\widehat{BHM}\) = \(\widehat{MHO}\) ( = \(90^{^0}\))

HB = HO ( cmt )

⇒ Δ HBM = Δ HOM ( c - g - c )

⇒ MB = MC ( 2 cạnh tương ứng )

⇒ Δ MBO cân tại M

\(\widehat{BMO}\) = \(180^{^0}\) \(-2\) . \(\widehat{MBO}\)

= \(180^{^0}-2.15^{^0}\) = \(150^{^0}\)

Lại có : \(\widehat{BMC}\) + \(\widehat{BMO}\) + \(\widehat{CMO}\) = \(360^{^0}\)

\(60^{^0}+150^{^0}+\widehat{CMO}=360^{^0}\left(\widehat{BMC}=60^0\right)\)

\(\widehat{CMO}\) \(=360^{^0}-210^{^0}=150^{^0}\)

Xét ΔBMO và ΔCMO có :

MO chung

\(\widehat{BMO}=\widehat{CMO}\left(=150^0\right)\)

BM = CM ( Δ MBC đều )

⇒ ΔBMO = ΔCMO ( c - g - c )

⇒ BO = CO ( 2 cạnh tương ứng )

⇒ Δ OBC cân tại O ( T/c )

hiep luong
13 tháng 1 2019 lúc 20:31

Ta có : ΔABC:ΔABC:ˆAA^ = 900900 ( gt )

ˆBB^ + ˆACBACB^ = 900900 ( T/c Δ vuông )

ˆACBACB^ = 150150 ( gt)

ˆABCABC^ =900−150=750=900−150=750

- Trên nửa mặt phẳng chứa A có bờ là BC , vẽ tam giác đều MBC

ˆMBCMBC^ =600=600( T/c Δ đều )

ˆMBCMBC^ =750−600=150=750−600=150

- Lấy H là trung điểm BO ⇒ HB = HO = AC

Xét ΔHBM và ΔACB có :

HB = HC ( cmt )

ˆHBMHBM^ = ˆACBACB^ (=150)(=150)

BM = CB ( Δ MBC đều )

⇒ Δ HBM = Δ ACB ( c - g - c )

ˆBHMBHM^ = ˆCABCAB^ ( hai góc tương ứng )

ˆCABCAB^ = 900900 (gt)

ˆBHMBHM^ = ˆMHCMHC^ = 900900

- Xét Δ HBM và Δ HOM có :

HM chung

ˆBHMBHM^ = ˆMHOMHO^ ( = 900900)

HB = HO ( cmt )

⇒ Δ HBM = Δ HOM ( c - g - c )

⇒ MB = MC ( 2 cạnh tương ứng )

⇒ Δ MBO cân tại M

ˆBMOBMO^ = 18001800 −2−2 . ˆMBOMBO^

= 1800−2.1501800−2.150 = 15001500

Lại có : ˆBMCBMC^ + ˆBMOBMO^ + ˆCMOCMO^ = 36003600

600+1500+ˆCMO=3600(ˆBMC=600)600+1500+CMO^=3600(BMC^=600)

ˆCMOCMO^ =3600−2100=1500=3600−2100=1500

Xét ΔBMO và ΔCMO có :

MO chung

ˆBMO=ˆCMO(=1500)BMO^=CMO^(=1500)

BM = CM ( Δ MBC đều )

⇒ ΔBMO = ΔCMO ( c - g - c )

⇒ BO = CO ( 2 cạnh tương ứng )

⇒ Δ OBC cân tại O ( Tcbc]

hình:

Các câu hỏi tương tự
Huỳnh Ngọc Lộc
Xem chi tiết
Trần Thị Tuý Nga
Xem chi tiết
Tuệ Lâm Trần Nguyễn
Xem chi tiết
Trần Thị Tuý Nga
Xem chi tiết
Kim Hoàng Oanh
Xem chi tiết
Thao Dong Nguyen
Xem chi tiết
crewmate
Xem chi tiết
crewmate
Xem chi tiết
Thùy Linh
Xem chi tiết