Cho tam giác ABC vuông tại A, đường cao AH chia cạnh huyền BC thành hai đoạn BH, CH có độ dài lần lượt là 4cm, 9cm. Gọi D và E lần lượt là hình chiếu của H trên AB và AC
a) Tính độ dài đoạn thẳng DE
b) Các đường thẳng vuông góc với DE tại D và tại E lần lượt cắt BC tại M và N. Chứng minh M là trung điểm của BH và N là trung điểm của CH
c) Tính diện tích tứ giác DENM
Cho tam giác ABC vuông tại A, đường cao AH.
a.Cho sinABC=\(\dfrac{3}{5}\), BC=20cm. Tính các cạnh AB, AC, BH và góc ACB
b) Đường thẳng vuông góc với BC tại B cắt đường thẳng AC tại D.
Chứng minh: AD.AC = BH.BC
Cho tam giác ABC vuông tại A có góc B = 2 góc C và BC = a (a > 0)
a/ Tính AB theo a
b/ Kẻ đường cao AH. Gọi E,F lần lượt là hình chiếu của H trên AB,AC. Chứng minh AE.AB=À=AC
c/ Qua A kẻ đường thẳng BC, cắt tia phân giác của góc ABC tại D. Gọi I,K là trung điểm của AC,BD. Tính IK theo a.
Help me I need right now PLEASE!!!
Cho tam giác ABC vuông tại A có AB=9cm AC=12cm BC=15cm. Kẻ đường cao AH và trung tuyến AO. Tia phân giác trong và ngoài của góc BAC lần lượt cắt BC tại D, E. Chứng minh \(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{\sqrt{2}}{AD}\)
Cho tam giác ABC vuông ở A, AB = 6cm, AC = 8cm
a) Tính \(BC,\widehat{B},\widehat{C}\)
b) Phân giác của góc A cắt BC tại D. Tính BD, CD
c) Từ D kẻ DE và DF lần lượt vuông góc với AB và AC. Tứ giác AEDF là hình gì ? Tính chu vi và diện tích của tứ giác AEDF
cho ΔABC vuông tại A, đường cao AH.Gọi E,F lần lượt là hình chiếu của H trên AB,AC.
1)Cho AB=9cm,BH=5,4cm.Tính các cạnh AC,BC,AH,FE.Tính các góc ABC,HAC(làm tròn đến độ)
2) Tính diện tích tứ giác AEHF, tam giác AFE
3) Kẻ đường phân giác AD,từ D kẻ DP\(\perp\)AB,DQ\(\perp\)AC.Tính BD,CD,AD, chu vi và diện tích AQDP
4) chứng minh rằng:
a) AE.AB=AF.AC=HB.HC b)BC=AB.cosB+AC.cosC
c)tanB.sinB=HC/AB d)cosC.sinB=HC/BC
5)Chứng minh rằng: 1/EF2 =1/AB2 + 1/AC2
6) Chứng minh rằng: EA.EB+FA.FC=HB.HC
Cho ΔABC vuông tại A, kẻ đường cao AH. Biết BC = 5cm, = 30O
a) Giải tam giác vuông ABC, Tính AH, HB, HC.
b) Qua C kẻ đường thẳng vuông góc AC, cắt AH tại M. Chứng minh AH. AM = CH. CB
cho ΔABc vuông tại A có đường cao AH. Hãy tính độ đài các đoạn thẳng BH,CH,AH,AC nếu biết AB=6cm,BC=10
cho ΔABC vuông tại A, đường cao AH.Gọi E,F lần lượt là hình chiếu của H trên AB,AC.
1)Cho AB=9cm,BH=5,4cm.Tính các cạnh AC,BC,AH,FE.Tính các góc ABC,HAC(làm tròn đến độ)
2) Tính diện tích tứ giác AEHF, tam giác AFE
3) Kẻ đường phân giác AD,từ D kẻ DP⊥⊥AB,DQ⊥⊥AC.Tính BD,CD,AD, chu vi và diện tích AQDP
4) chứng minh rằng:
a) AE.AB=AF.AC=HB.HC b)BC=AB.cosB+AC.cosC
c)tanB.sinB=HC/AB d)cosC.sinB=HC/BC
5)Chứng minh rằng: 1/EF2 =1/AB2 + 1/AC2
6) Chứng minh rằng: EA.EB+FA.FC=HB.HC