Cho tam giác ABC cân tại A. Vẽ BD vuông với AC tại D, CE vuông với AB tại E . Gọi H là giao điểm của BD và CE. Chứng minh rằng: a) BD = CE b) IH vuông góc BC .giúp mik với ạ 😩🥺❤️❤️
Cho tam giác ABC cân tại A có AH vuông góc BC tại H
a) Chứng minh: tam giác ABH=ACH
b) Gọi D là trung điểm đoạn CH, từ D kẻ đường thẳng vuông góc BC cắt cạnh AC tại E. Chứng minh: Tam giác EDH= tam giác EDC
c) Chứng minh E là trung điểm đoạn thẳng AC
d) Giả sử AH=15cm , BH=9cm và G là trọng tâm của tam giác ABC. Tính độ dài đoạn thẳng AH và AG.
Cho tam giác ABC cân tại B. Lấy N là trung điểm của AC. a) Chứng minh: BN là tia phân giác của góc ABC. b) Vẽ NP Vuông AB tại P, NQ Vuông BC tại Q. Chứng minh: tam giác ANP=tam giác CNQ ( MÌNH ĐANG CẦN GẤP Ạ)
Bài:_ Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC (D thuộc AC). Kẻ CE vuông góc với AB (E thuộc AB). BD và CE cắt nhau tại I. Là Là a) Cho BC = 5cm, DC = 3cm. Tính độ dài BD. b) Chứng minh rằng BD =CE. c) thẳng AI cắt BC tại H. Chứng minh rằng AI vuông góc với BC tại H.
cho tam giác ABC cân tại A, vẽ BH vuông góc với AC tại H, vẽ CK vuông góc với AB tại K A) chứng minh tam giác BHC bằng tam giác CKB B) chứng minh tam giác AHK cân C) chứng minh HK // BC D)gọi O là giao điểm của BH và CK, M là trung điểm của BC.Chứng minh ba điểm A,O,M thẳng hàng
Cho △ABC cân tại A. Kẻ BD vuông góc với AC tại D và CE vuông góc với AB tại E. Gọi I là giao điểm của BD và CE. a) Chứng minh: △ABD = △ACE. b) Chứng minh: IB = IC. c) Lấy M là trung điểm của AI. Chứng minh MB = MC. d) Chứng minh AI vuông góc với BC
( CẦN GẤP!!!!!!!!!!!!!!!!!!!!!!!!!!!)
Cho tam giác MNP vuông tại M có MN = 3cm. MP = 4cm.
a) Tính độ dài NP.
b) Trên tia MN lấy điểm D sao cho N là trung điểm của MD. Từ N vẽ đường thẳng vuông góc với MD cắt PD tại E. Chứng minh rằng tam giác MDE cân tại E.
c) Trên tia đối của tia EM lấy điểm F sao cho EM = EF. Từ F kẻ FI vuông góc với NE tại I. Chứng minh rằng FI = ND.
d) Chứng minh 3 điểm F, I, P thẳng hàng.
Cho tam giác ABC có AB < AC. Qua trung điểm K của BC vẽ đường thẳng d vuông góc với tia phân giác của góc A, d cắt AB, AC lần lượt tại H, I.
a) Chứng minh rằng: BH = CI
b) Chứng minh rằng: góc KAB> góc KAC
c) Nếu góc A vuông, gọi M, N lần lượt là trung điểm của AB, AC. Cmr: BN^2 + CM^2 = 5/4 * BC^2
d) Lấy điểm P thay đổi trên AB, điểm Q thay đổi trên AC sao cho BP = CQ. Chứng minh rằng: Đường thẳng đi qua trung điểm và vuông góc với PQ luôn đi qua một điểm cố định.